| import nltk | |
| nltk.download('all') | |
| nltk.download('averaged_perceptron_tagger') | |
| nltk.download('punkt') | |
| import os | |
| import uuid | |
| import time | |
| import torch | |
| import gradio as gr | |
| os.environ["NUMBA_DISABLE_CACHE"] = "1" | |
| # import mecab_patch | |
| # import english_patch | |
| #from melo.api import TTS | |
| from MeloTTS.melo.api import TTS | |
| from openvoice.api import ToneColorConverter | |
| #from meloTTS import english | |
| # Set temporary cache locations for Hugging Face Spaces | |
| os.environ["TORCH_HOME"] = "/tmp/torch" | |
| os.environ["HF_HOME"] = "/tmp/huggingface" | |
| os.environ["HF_HUB_CACHE"] = "/tmp/huggingface" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
| os.environ["MPLCONFIGDIR"] = "/tmp" | |
| os.environ["XDG_CACHE_HOME"] = "/tmp" | |
| os.environ["XDG_CONFIG_HOME"] = "/tmp" | |
| os.environ["NUMBA_DISABLE_CACHE"] = "1" | |
| os.makedirs("/tmp/torch", exist_ok=True) | |
| os.makedirs("/tmp/huggingface", exist_ok=True) | |
| os.makedirs("/tmp/flagged", exist_ok=True) | |
| # Output folder | |
| output_dir = "/tmp/outputs" | |
| os.makedirs(output_dir, exist_ok=True) | |
| # Initialize tone converter | |
| ckpt_converter = "checkpoints/converter/config.json" | |
| tone_color_converter = ToneColorConverter(ckpt_converter) | |
| # Device setting | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def clone_and_speak(text, speaker_wav): | |
| if not speaker_wav: | |
| return "Please upload a reference .wav file." | |
| base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}" | |
| tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav" | |
| final_output_path = f"{output_dir}/{base_name}_converted.wav" | |
| # Use English speaker model | |
| model = TTS(language="EN", device=device) | |
| speaker_ids = model.hps.data.spk2id | |
| #default_speaker_id = next(iter(speaker_ids.values())) | |
| for speaker_key in speaker_ids.keys(): | |
| speaker_id = speaker_ids[speaker_key] | |
| speaker_key = speaker_key.lower().replace('_', '-') | |
| # Generate base TTS voice | |
| speed = 1.0 | |
| #source_se = torch.load(f'checkpoints/base_speakers/EN/{speaker_key}.pth', map_location=device) | |
| model.tts_to_file(text, speaker_id, tmp_melo_path,speed=speed) | |
| # Use speaker_wav as reference to extract style embedding | |
| from openvoice import se_extractor | |
| torch.hub.load('snakers4/silero-vad', 'silero_vad', force_reload=False) | |
| ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=True) | |
| # Run the tone conversion | |
| tone_color_converter.convert( | |
| audio_src_path=tmp_melo_path, | |
| src_se=ref_se, | |
| tgt_se=ref_se, | |
| output_path=final_output_path, | |
| message="@HuggingFace", | |
| ) | |
| return final_output_path | |
| gr.Interface( | |
| fn=clone_and_speak, | |
| inputs=[ | |
| gr.Textbox(label="Enter Text"), | |
| gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)") | |
| ], | |
| outputs=gr.Audio(label="Synthesized Output"), | |
| flagging_dir="/tmp/flagged", | |
| title="Text to Voice using Melo TTS + OpenVoice", | |
| description="Use Melo TTS for base synthesis and OpenVoice to apply a reference speaker's tone.", | |
| ).launch() | |
| # iface = gr.Interface( | |
| # fn=clone_with_base_speaker, | |
| # inputs=[ | |
| # gr.Textbox(label="Input Text", placeholder="Enter text to synthesize..."), | |
| # gr.Dropdown(choices=base_speaker_choices, label="Select Base Speaker"), | |
| # ], | |
| # outputs=gr.Audio(type="filepath", label="Cloned Voice Output"), | |
| # title="Voice Cloning with OpenVoice Base Speakers", | |
| # description="Choose a base speaker from OpenVoice and enter text to generate voice." | |
| # ) | |
| # iface.launch() | |
| # import os | |
| # import time | |
| # import uuid | |
| # import gradio as gr | |
| # from TTS.api import TTS | |
| # from openvoice import se_extractor | |
| # from openvoice.api import ToneColorConverter | |
| # # Import your local english.py logic | |
| # from meloTTS import english | |
| # # Paths | |
| # device = "cuda" if os.system("nvidia-smi") == 0 else "cpu" | |
| # output_dir = "outputs" | |
| # os.makedirs(output_dir, exist_ok=True) | |
| # # Load OpenVoice tone converter | |
| # tone_color_converter = ToneColorConverter(f"{os.getcwd()}/checkpoints", device=device) | |
| # tone_color_converter.load_model() | |
| # def clone_and_speak(text, speaker_wav): | |
| # if not speaker_wav: | |
| # return "Please upload a reference .wav file." | |
| # base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}" | |
| # tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav" | |
| # final_output_path = f"{output_dir}/{base_name}_converted.wav" | |
| # # Use English speaker model | |
| # model = TTS(language="EN", device=device) | |
| # speaker_ids = model.hps.data.spk2id | |
| # default_speaker_id = next(iter(speaker_ids.values())) | |
| # # Generate base TTS voice | |
| # model.tts_to_file(text, speaker_id=default_speaker_id, file_path=tmp_melo_path, speed=1.0) | |
| # # Extract style embedding | |
| # ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=False) | |
| # # Convert tone | |
| # tone_color_converter.convert( | |
| # audio_src_path=tmp_melo_path, | |
| # src_se=ref_se, | |
| # tgt_se=ref_se, | |
| # output_path=final_output_path, | |
| # message="@HuggingFace" | |
| # ) | |
| # return final_output_path | |
| # # Gradio Interface | |
| # demo = gr.Interface( | |
| # fn=clone_and_speak, | |
| # inputs=[ | |
| # gr.Textbox(label="Text to Synthesize"), | |
| # gr.Audio(label="Reference Voice (WAV)", type="filepath") | |
| # ], | |
| # outputs=gr.Audio(label="Cloned Voice Output"), | |
| # title="Voice Cloner with MeloTTS + OpenVoice" | |
| # ) | |
| # if __name__ == "__main__": | |
| # demo.launch() | |