File size: 21,383 Bytes
ef2badf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b72673
ef2badf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
'''
this is a combined script that implements DETR object detection with interpretability methods
using Grad-CAM, Grad-CAM++, Integrated Gradients, and Monte Carlo Dropout for uncertainty estimation.
It provides a Gradio-based web interface for users to upload images, select detected objects
and visualize explanations and uncertainty maps.

How to run it:

```python
python detr_and_interp.py
```

'''

import torch, requests, numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image, ImageFilter
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
from torchvision.transforms.functional import resize
from captum.attr import IntegratedGradients
import torch.nn.functional as F
import logging
import os
from datetime import datetime

# ---------- Logging Setup ----------
log_dir = os.path.join(os.path.dirname(__file__), "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"detr_interp_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s',
    handlers=[
        logging.FileHandler(log_file),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

logger.info("Starting DETR Interpretability Dashboard")

device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")

model_name = "facebook/detr-resnet-50"
logger.info(f"Loading model: {model_name}")
model = DetrForObjectDetection.from_pretrained(model_name).to(device)
extractor = DetrImageProcessor.from_pretrained(model_name)
model.eval()
logger.info("Model loaded and set to evaluation mode")

# ---------- Grad-CAM / Grad-CAM++ ----------
def gradcam(img, det_idx, keep, pixel_values, use_pp=False):
    """
    Compute Grad-CAM (or Grad-CAM++) heatmap for a selected detection.

    What it computes:
    - Captures feature-map activations from a late conv layer and the gradients of the
      detection score w.r.t. those activations. Channel-wise weights are computed from
      gradients and used to combine feature maps into a spatial heatmap.

    Why this matters:
    - Highlights which spatial regions the model used to make the prediction. Useful to
      check whether the detector is attending to the object vs irrelevant background.

    How to interpret results:
    - High values in the returned heatmap indicate regions that contributed positively to
      the detection score. Grad-CAM++ (use_pp=True) computes a refined weighting that often
      yields sharper, better-localized maps when multiple instances overlap.

    Caveats & tips:
    - Choosing a layer too early will give fine-grained but semantically weak maps; too late
      will be coarse. We pick a late backbone conv block (layer4[-1]) as a sensible default.
    - Hooks must be removed after use to avoid memory leaks; we do that below.

    References:
    - Selvaraju et al., Grad-CAM (2017): https://arxiv.org/abs/1610.02391
    """
    logger.info(f"Running {'Grad-CAM++' if use_pp else 'Grad-CAM'} for detection {det_idx}")
    try:
        # pick a late conv layer that still retains spatial info
        conv_layer = model.model.backbone.conv_encoder.model.layer4[-1]
        activations, gradients = {}, {}

        def fwd(m, i, o):
            activations["v"] = o.detach()

        def bwd(m, gi, go):
            gradients["v"] = go[0].detach()

        h1 = conv_layer.register_forward_hook(fwd)
        h2 = conv_layer.register_full_backward_hook(bwd) if hasattr(conv_layer, "register_full_backward_hook") else conv_layer.register_backward_hook(bwd)
        logger.debug("Hooks registered for Grad-CAM")

        outputs_for_attr = model(pixel_values)
        logits = outputs_for_attr.logits
        labels = logits.argmax(-1).squeeze(0)
        label_id = labels[keep.nonzero()[det_idx]].item()
        score = logits[0, keep.nonzero()[det_idx], label_id]
        logger.debug(f"Target label_id: {label_id}, score: {score.item():.4f}")

        model.zero_grad()
        score.backward()

        acts = activations["v"].squeeze(0)
        grads = gradients["v"].squeeze(0)
        logger.debug(f"Activations shape: {acts.shape}, Gradients shape: {grads.shape}")

        if use_pp:  # Grad-CAM++
            weights = (grads ** 2).mean(dim=(1, 2)) / (2 * (grads ** 2).mean(dim=(1, 2)) + (acts * grads ** 3).mean(dim=(1, 2)) + 1e-8)
        else:  # vanilla Grad-CAM
            weights = grads.mean(dim=(1, 2))

        cam = torch.relu((weights[:, None, None] * acts).sum(0))
        cam = cam / (cam.max() + 1e-8)
        cam_resized = resize(cam.unsqueeze(0).unsqueeze(0), img.size[::-1])[0, 0].cpu().numpy()

        h1.remove(); h2.remove()
        logger.info(f"{'Grad-CAM++' if use_pp else 'Grad-CAM'} completed successfully")
        return cam_resized
    except Exception as e:
        logger.error(f"Error in gradcam: {str(e)}", exc_info=True)
        raise

# ---------- Integrated Gradients ----------
def integrated_grad(img, det_idx, keep, outputs_for_attr, pixel_values, baseline="black"):
    """
    Compute Integrated Gradients attribution map for a detection's logit.

    What it computes:
    - Integrates gradients along a path from a baseline input to the real input in embedding
      space, producing per-pixel (or per-channel) attributions.

    Why baseline choice matters:
    - The baseline defines what the model should consider as 'no signal'. Common choices:
      black (zeros), a blurred version of the image, or a neutral/mean image. Different
      baselines highlight different aspects of the input.

    How to read the output:
    - Values > 0 indicate pixels that increase the detection logit vs baseline; values < 0
      reduce it. We normalize the result to [0,1] for visualization convenience.

    Tips:
    - Increase n_steps for smoother attributions (costlier). Check convergence_delta to
      validate IG's completeness property.

    References:
    - Distill article on baselines: https://distill.pub/2020/attribution-baselines
    - Captum IntegratedGradients docs: https://captum.ai/api/integrated_gradients.html
    """
    logger.info(f"Running Integrated Gradients with {baseline} baseline for detection {det_idx}")
    try:
        logits = outputs_for_attr.logits
        labels = logits.argmax(-1).squeeze(0)
        label_id = labels[keep.nonzero()[det_idx]].item()
        logger.debug(f"IG target label_id: {label_id}")

        # Baselines
        if baseline == "black":
            base = torch.zeros_like(pixel_values)
            logger.debug("Using black baseline")
        elif baseline == "blur":
            blur = img.filter(ImageFilter.GaussianBlur(radius=15))
            base = extractor(images=blur, return_tensors="pt")["pixel_values"].to(device)
            logger.debug("Using blurred baseline")
        else:
            base = torch.zeros_like(pixel_values)
            logger.debug("Defaulting to black baseline")

        def forward_func(pix):
            return model(pix).logits[:, keep.nonzero()[det_idx], label_id]

        ig = IntegratedGradients(forward_func)
        attr, _ = ig.attribute(pixel_values, baselines=base, n_steps=25, return_convergence_delta=True)
        arr = attr.squeeze().mean(0).cpu().detach().numpy()
        logger.info(f"Integrated Gradients with {baseline} baseline completed")
        return (arr - arr.min()) / (arr.max() - arr.min() + 1e-8)
    except Exception as e:
        logger.error(f"Error in integrated_grad: {str(e)}", exc_info=True)
        raise

# ---------- Monte Carlo Dropout Uncertainty ----------
def mc_dropout_uncertainty(img, det_idx, keep, pixel_values, n_samples=20, dropout_p=0.1):
    """
    Estimate uncertainty by running multiple stochastic forward passes with dropout active.

    What it computes:
    - Runs the model multiple times with dropout enabled and computes a CAM per run.
    - Returns the per-pixel mean and standard deviation across CAMs. High std indicates
      the model's focus is unstable across stochastic perturbations.

    Why this helps:
    - If heatmaps vary a lot, the interpretability output is less reliable. Use this to flag
      detections where explanations may not be trustworthy.

    Practical tips:
    - Increasing n_samples reduces variance in the estimate but increases runtime.
    - Temporarily sets the model to train mode to activate dropout modules; restores eval mode.
    """
    logger.info(f"Running MC Dropout uncertainty: samples={n_samples}, p={dropout_p}, detection={det_idx}")
    try:
        def enable_dropout(m):
            if isinstance(m, torch.nn.Dropout):
                m.train()

        model.train()
        model.apply(enable_dropout)

        cams = []
        conv_layer = model.model.backbone.conv_encoder.model.layer4[-1]

        for i in range(n_samples):
            outputs = model(pixel_values)
            logits = outputs.logits
            labels = logits.argmax(-1).squeeze(0)
            label_id = labels[keep.nonzero()[det_idx]].item()
            score = logits[0, keep.nonzero()[det_idx], label_id]

            acts, grads = {}, {}

            def fwd(m, i, o):
                acts['v'] = o.detach()

            def bwd(m, gi, go):
                grads['v'] = go[0].detach()

            h1 = conv_layer.register_forward_hook(fwd)
            h2 = (conv_layer.register_full_backward_hook(bwd)
                  if hasattr(conv_layer, 'register_full_backward_hook')
                  else conv_layer.register_backward_hook(bwd))

            model.zero_grad()
            score.backward(retain_graph=False)

            if 'v' not in acts:
                logger.warning(f"No activations captured in sample {i}, using fallback zero map")
                cam_resized = np.zeros((img.size[1], img.size[0]))
            else:
                act = acts['v'].squeeze(0)
                grad = grads['v'].squeeze(0)
                weights = grad.mean(dim=(1, 2))
                cam = torch.relu((weights[:, None, None] * act).sum(0))
                cam = cam / (cam.max() + 1e-8)
                cam_resized = resize(cam.unsqueeze(0).unsqueeze(0), img.size[::-1])[0, 0].cpu().numpy()

            cams.append(cam_resized)
            h1.remove(); h2.remove()

        model.eval()

        if len(cams) == 0:
            logger.error("No valid CAM maps generated")
            return np.zeros((img.size[1], img.size[0])), np.zeros((img.size[1], img.size[0]))

        cams_arr = np.stack(cams, axis=0)
        mean_map = cams_arr.mean(0)
        std_map = cams_arr.std(0)

        mean_map = (mean_map - mean_map.min()) / (mean_map.max() - mean_map.min() + 1e-8)
        std_map = (std_map - std_map.min()) / (std_map.max() - std_map.min() + 1e-8)

        logger.info("MC Dropout uncertainty completed")
        return mean_map, std_map
    except Exception as e:
        logger.error(f"Error in mc_dropout_uncertainty: {str(e)}", exc_info=True)
        model.eval()
        raise

# ---------- Full pipeline ----------
def interpret(img, det_choice, conf_thresh, cam_variant, mc_samples, dropout_p):
    logger.info(f"Starting interpretation - detection: {det_choice}, threshold: {conf_thresh}, cam: {cam_variant}, mc_samples: {mc_samples}, dropout_p: {dropout_p}")
    try:
        inputs = extractor(images=img, return_tensors="pt").to(device)
        with torch.no_grad(): outputs = model(**inputs)
        pixel_values_attr = inputs["pixel_values"].clone().requires_grad_(True)
        target_sizes = [img.size[::-1]]
        results = extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.0)[0]
        keep = results["scores"] > conf_thresh
        labels, scores = results["labels"][keep], results["scores"][keep]
        
        logger.info(f"Found {len(labels)} detections above threshold {conf_thresh}")

        if len(labels) == 0:
            logger.warning("No detections found above threshold")
            return None, "No detections above threshold", None, ""

        if det_choice is None:
            det_idx = 0
        else:
            try: det_idx = int(str(det_choice).split(":")[0])
            except: det_idx = 0
        
        label = model.config.id2label[labels[det_idx].item()]
        logger.info(f"Selected detection {det_idx}: {label}")

        # Grad-CAM / Grad-CAM++ (single deterministic pass)
        cam = gradcam(img, det_idx, keep, pixel_values_attr, use_pp=(cam_variant=="Grad-CAM++"))
        fig1, ax1 = plt.subplots(); ax1.imshow(img); ax1.imshow(cam, cmap="jet", alpha=0.5); ax1.axis("off")
        ax1.set_title(f"{cam_variant}: {label}"); plt.close(fig1)
        logger.debug(f"{cam_variant} visualization created")

        # MC Dropout Uncertainty analysis
        mean_map, std_map = mc_dropout_uncertainty(img, det_idx, keep, pixel_values_attr, n_samples=int(mc_samples), dropout_p=float(dropout_p))
        # Create a composite figure: mean map and std map side-by-side
        fig2, axes = plt.subplots(1,2, figsize=(8,4))
        axes[0].imshow(img); axes[0].imshow(mean_map, cmap='hot', alpha=0.5); axes[0].axis('off'); axes[0].set_title('Predictive Mean')
        axes[1].imshow(img); axes[1].imshow(std_map, cmap='viridis', alpha=0.5); axes[1].axis('off'); axes[1].set_title('Predictive Std (Uncertainty)')
        plt.close(fig2)
        logger.debug("MC Dropout uncertainty visualization created")

        exp1 = f"πŸ”Ž {cam_variant}:\nGradient-weighted feature maps β†’ highlights where DETR focused."
        exp2 = f"πŸ”Ž MC Dropout Uncertainty:\nSamples={mc_samples}, dropout={dropout_p}. Shows predictive mean and per-pixel std as uncertainty."

        logger.info("Interpretation completed successfully")
        return fig1, exp1, fig2, exp2
    except Exception as e:
        logger.error(f"Error in interpret function: {str(e)}", exc_info=True)
        return None, f"Error: {str(e)}", None, ""

# ---------- Gradio UI ----------
with gr.Blocks() as demo:
    gr.Markdown("## 🧠 DETR Interpretability Dashboard with Controls")
    gr.Markdown(
        """
        **How to use this dashboard**

        - Upload an image using the left panel. The model will run object detection and list detected objects. Try [imageNet](https://www.image-net.org/)
        - Use the "Confidence Threshold" slider to filter detections by score. Detections below the threshold are hidden.
        - Pick a detection from the dropdown to generate explanations for that object.
        - Choose between `Grad-CAM` and `Grad-CAM++` (Grad-CAM++ often gives sharper, more localized maps).
        - `MC Dropout Samples` controls how many stochastic forward passes are used to estimate prediction uncertainty. More samples give smoother estimates but take longer.
        - `Dropout Probability` sets the dropout rate used during MC Dropout; higher values typically increase predicted uncertainty.

        Tooltips are provided on each control (hover or focus) for quick hints.
        """
    )

    with gr.Row():
        img_in = gr.Image(type="pil", label="Upload an image")
        det_out = gr.Label(label="Detections")
    det_fig = gr.Plot(label="Detections visualization")
    det_choice = gr.Dropdown(label="Pick a detection for explanation")

    with gr.Row():
        conf_thresh = gr.Slider(0, 1, value=0.7, step=0.05, label="Confidence Threshold")
        cam_variant = gr.Radio(["Grad-CAM", "Grad-CAM++"], value="Grad-CAM", label="Grad-CAM Variant")
        mc_samples = gr.Slider(1, 100, value=20, step=1, label="MC Dropout Samples")
        dropout_p = gr.Slider(0.0, 0.9, value=0.1, step=0.05, label="Dropout Probability")

    btn = gr.Button("Explain")

    gc_fig = gr.Plot(label="Grad-CAM / Grad-CAM++")
    gc_txt = gr.Textbox(label="Explanation (Grad-CAM)")
    unc_fig = gr.Plot(label="Uncertainty (MC Dropout)")
    unc_txt = gr.Textbox(label="Explanation (Uncertainty)")

    # Visible control tooltips section (for environments where hovering tooltips are not available)
    gr.Markdown(
        """
        **Control tooltips (quick reference)**

        - Confidence Threshold: Filter out detections with confidence below this value.
        - Grad-CAM Variant: Choose the gradient-based visualization method. Grad-CAM++ may highlight smaller regions more precisely.
        - MC Dropout Samples: Number of stochastic forward passes for uncertainty estimation. Increase for more stable results.
        - Dropout Probability: Dropout rate used during MC Dropout sampling. Higher values typically increase predictive variance.
        - Pick a detection: Select which detected object to explain. Format shown as 'index: label (score)'.
        """
    )

    # ---------- Key interpretability choices (Feynman-style) ----------
    gr.Markdown(
        """
        **Key interpretability choices & why they matter**

        - **Baseline (Integrated Gradients)**: Defines what 'no signal' looks like. Black (zeros) is simple, but blurred or neutral baselines may give more meaningful attributions.
        - **Which conv layer for Grad-CAM**: Early layers give fine texture but low semantics; very late layers are coarse. A late backbone conv (default used) is a good compromise.
        - **Number of MC Dropout samples**: More samples = smoother, more stable uncertainty estimates, but higher compute cost.
        - **Grad-CAM vs Grad-CAM++**: Grad-CAM++ can be sharper and better for overlapping instances; vanilla Grad-CAM is faster and simpler.
        """
    )

    # ---------- Further reading / Feynman-style references ----------
    # Add short, clickable references so users can read the original papers and deep-dive articles.
    gr.Markdown(
        """
        **Further reading (recommended)**

        - [Grad-CAM β€” Selvaraju et al., 2017 (arXiv)](https://arxiv.org/abs/1610.02391) β€” the original Grad-CAM paper; explains the core idea of gradient-weighted localization.
        - [Grad-CAM++ β€” Chattopadhay et al.](https://arxiv.org/abs/1710.11063) β€” an improved variant that often produces sharper maps and handles multiple instances better.
        - [Visualizing the Impact of Feature Attribution Baselines (Distill)](https://distill.pub/2020/attribution-baselines) β€” an accessible deep dive on baseline choices for Integrated Gradients.
        - [Captum docs β€” IntegratedGradients](https://captum.ai/api/integrated_gradients.html) β€” practical API notes for baseline, n_steps, and convergence delta.
        - [Constructing sensible baselines for Integrated Gradients](https://arxiv.org/abs/2004.09627) β€” discussion and techniques for choosing baselines beyond a black image.
        - [A New Baseline Assumption of Integrated Gradients Based on Shapley Values](https://arxiv.org/html/2310.04821v3) β€” recent research on improved baselines.
        """
    )

    # Helper: safe label getter in case model.config.id2label is missing or not a dict
    def safe_label_lookup(idx):
        try:
            id2label = getattr(model.config, 'id2label', None)
            if id2label is None:
                return f"Class {idx}"
            return id2label.get(int(idx), f"Class {idx}")
        except Exception:
            return f"Class {idx}"

    def run_detect(img, conf_thresh):
        logger.info(f"Running detection with confidence threshold: {conf_thresh}")
        try:
            inputs = extractor(images=img, return_tensors="pt").to(device)
            with torch.no_grad(): outputs = model(**inputs)
            target_sizes = [img.size[::-1]]
            results = extractor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.0)[0]
            keep = results["scores"] > conf_thresh
            boxes, labels, scores = results["boxes"][keep], results["labels"][keep], results["scores"][keep]
            
            logger.info(f"Detection found {len(labels)} objects above threshold")
            
            det_list = [f"{i}: {safe_label_lookup(l.item())} ({s:.2f})" for i,(l,s) in enumerate(zip(labels,scores))]
            fig, ax = plt.subplots(); ax.imshow(img); ax.axis("off")
            for box,label,score in zip(boxes,labels,scores):
                xmin,ymin,xmax,ymax = box
                ax.add_patch(patches.Rectangle((xmin,ymin),xmax-xmin,ymax-ymin,fill=False,color="red",lw=2))
                ax.text(xmin,ymin,f"{safe_label_lookup(label.item())}:{score:.2f}",color="black",
                        bbox=dict(facecolor="yellow",alpha=0.5))
            plt.close(fig)
            default_val = det_list[0] if len(det_list) > 0 else None
            logger.debug("Detection visualization created")
            return {det_out: str(det_list), det_fig: fig, det_choice: gr.update(choices=det_list, value=default_val)}
        except Exception as e:
            logger.error(f"Error in run_detect: {str(e)}", exc_info=True)
            return {det_out: "Error in detection", det_fig: None, det_choice: gr.update(choices=[], value=None)}

    img_in.change(run_detect, inputs=[img_in, conf_thresh], outputs=[det_out, det_fig, det_choice])
    btn.click(interpret, inputs=[img_in, det_choice, conf_thresh, cam_variant, mc_samples, dropout_p],
              outputs=[gc_fig, gc_txt, unc_fig, unc_txt])

logger.info("Gradio interface configured, launching demo")
demo.launch()