Spaces:
Runtime error
Runtime error
| from typing import List | |
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| import supervision as sv | |
| from inference.models import YOLOWorld | |
| from utils.efficient_sam import load, inference_with_box | |
| MARKDOWN = """ | |
| # YOLO-World 🔥 [with Efficient-SAM] | |
| This is a demo of zero-shot instance segmentation using [YOLO-World](https://github.com/AILab-CVC/YOLO-World) and [Efficient-SAM](https://github.com/yformer/EfficientSAM). | |
| Powered by Roboflow [Inference](https://github.com/roboflow/inference) and [Supervision](https://github.com/roboflow/supervision). | |
| """ | |
| DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| EFFICIENT_SAM_MODEL = load(device=DEVICE) | |
| YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l") | |
| BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() | |
| MASK_ANNOTATOR = sv.MaskAnnotator() | |
| LABEL_ANNOTATOR = sv.LabelAnnotator() | |
| def process_categories(categories: str) -> List[str]: | |
| return [category.strip() for category in categories.split(',')] | |
| def process_image( | |
| input_image: np.ndarray, | |
| categories: str, | |
| confidence_threshold: float = 0.003, | |
| iou_threshold: float = 0.5, | |
| with_segmentation: bool = True, | |
| with_confidence: bool = True | |
| ) -> np.ndarray: | |
| categories = process_categories(categories) | |
| YOLO_WORLD_MODEL.set_classes(categories) | |
| results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold) | |
| detections = sv.Detections.from_inference(results).with_nms(iou_threshold) | |
| if with_segmentation: | |
| masks = [] | |
| for [x_min, y_min, x_max, y_max] in detections.xyxy: | |
| box = np.array([[x_min, y_min], [x_max, y_max]]) | |
| mask = inference_with_box(input_image, box, EFFICIENT_SAM_MODEL, DEVICE) | |
| masks.append(mask) | |
| detections.mask = np.array(masks) | |
| labels = [ | |
| f"{categories[class_id]}: {confidence:.2f}" if with_confidence else f"{categories[class_id]}" | |
| for class_id, confidence in | |
| zip(detections.class_id, detections.confidence) | |
| ] | |
| output_image = input_image.copy() | |
| output_image = MASK_ANNOTATOR.annotate(output_image, detections) | |
| output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections) | |
| output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) | |
| return output_image | |
| with gr.Blocks() as demo: | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| input_image_component = gr.Image( | |
| type='numpy', | |
| label='Input Image' | |
| ) | |
| output_image_component = gr.Image( | |
| type='numpy', | |
| label='Output Image' | |
| ) | |
| with gr.Row(): | |
| categories_text_component = gr.Textbox( | |
| label='Categories', | |
| placeholder='comma separated list of categories', | |
| scale=5 | |
| ) | |
| submit_button_component = gr.Button('Submit', scale=1) | |
| submit_button_component.click( | |
| fn=process_image, | |
| inputs=[input_image_component, categories_text_component], | |
| outputs=output_image_component | |
| ) | |
| demo.launch(debug=False, show_error=True) | |