Spaces:
Runtime error
Runtime error
advanced settings
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
from typing import Tuple
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
@@ -14,6 +16,8 @@ creating this amazing model, and a big thanks to [Gothos](https://github.com/Got
|
|
| 14 |
for taking it to the next level by enabling inpainting with the FLUX.
|
| 15 |
"""
|
| 16 |
|
|
|
|
|
|
|
| 17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
@@ -44,7 +48,15 @@ def resize_image_dimensions(
|
|
| 44 |
|
| 45 |
|
| 46 |
@spaces.GPU()
|
| 47 |
-
def process(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
if not input_text:
|
| 49 |
gr.Info("Please enter a text prompt.")
|
| 50 |
return None
|
|
@@ -64,14 +76,18 @@ def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True
|
|
| 64 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 65 |
resized_mask = mask.resize((width, height), Image.NEAREST)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
return pipe(
|
| 68 |
prompt=input_text,
|
| 69 |
image=resized_image,
|
| 70 |
mask_image=resized_mask,
|
| 71 |
width=width,
|
| 72 |
height=height,
|
| 73 |
-
strength=
|
| 74 |
-
|
|
|
|
| 75 |
).images[0], resized_mask
|
| 76 |
|
| 77 |
|
|
@@ -86,6 +102,7 @@ with gr.Blocks() as demo:
|
|
| 86 |
image_mode='RGB',
|
| 87 |
layers=False,
|
| 88 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
|
|
|
| 89 |
with gr.Row():
|
| 90 |
input_text_component = gr.Text(
|
| 91 |
label="Prompt",
|
|
@@ -96,6 +113,35 @@ with gr.Blocks() as demo:
|
|
| 96 |
)
|
| 97 |
submit_button_component = gr.Button(
|
| 98 |
value='Submit', variant='primary', scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Column():
|
| 100 |
output_gallery_component = gr.Gallery(
|
| 101 |
columns=[1],
|
|
@@ -110,7 +156,11 @@ with gr.Blocks() as demo:
|
|
| 110 |
fn=process,
|
| 111 |
inputs=[
|
| 112 |
input_image_editor_component,
|
| 113 |
-
input_text_component
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
],
|
| 115 |
outputs=[
|
| 116 |
output_gallery_component
|
|
|
|
| 1 |
from typing import Tuple
|
| 2 |
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
import gradio as gr
|
| 6 |
import spaces
|
| 7 |
import torch
|
|
|
|
| 16 |
for taking it to the next level by enabling inpainting with the FLUX.
|
| 17 |
"""
|
| 18 |
|
| 19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
MAX_IMAGE_SIZE = 2048
|
| 21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
@spaces.GPU()
|
| 51 |
+
def process(
|
| 52 |
+
input_image_editor: dict,
|
| 53 |
+
input_text: str,
|
| 54 |
+
seed_slicer: int,
|
| 55 |
+
randomize_seed_checkbox: bool,
|
| 56 |
+
strength_slider: float,
|
| 57 |
+
num_inference_steps_slider: int,
|
| 58 |
+
progress=gr.Progress(track_tqdm=True)
|
| 59 |
+
):
|
| 60 |
if not input_text:
|
| 61 |
gr.Info("Please enter a text prompt.")
|
| 62 |
return None
|
|
|
|
| 76 |
resized_image = image.resize((width, height), Image.LANCZOS)
|
| 77 |
resized_mask = mask.resize((width, height), Image.NEAREST)
|
| 78 |
|
| 79 |
+
if randomize_seed_checkbox:
|
| 80 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
| 81 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
| 82 |
return pipe(
|
| 83 |
prompt=input_text,
|
| 84 |
image=resized_image,
|
| 85 |
mask_image=resized_mask,
|
| 86 |
width=width,
|
| 87 |
height=height,
|
| 88 |
+
strength=strength_slider,
|
| 89 |
+
generator=generator,
|
| 90 |
+
num_inference_steps=num_inference_steps_slider
|
| 91 |
).images[0], resized_mask
|
| 92 |
|
| 93 |
|
|
|
|
| 102 |
image_mode='RGB',
|
| 103 |
layers=False,
|
| 104 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
| 105 |
+
|
| 106 |
with gr.Row():
|
| 107 |
input_text_component = gr.Text(
|
| 108 |
label="Prompt",
|
|
|
|
| 113 |
)
|
| 114 |
submit_button_component = gr.Button(
|
| 115 |
value='Submit', variant='primary', scale=0)
|
| 116 |
+
|
| 117 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 118 |
+
seed_slicer_component = gr.Slider(
|
| 119 |
+
label="Seed",
|
| 120 |
+
minimum=0,
|
| 121 |
+
maximum=MAX_SEED,
|
| 122 |
+
step=1,
|
| 123 |
+
value=0,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
| 127 |
+
label="Randomize seed", value=True)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
strength_slider_component = gr.Slider(
|
| 131 |
+
label="Strength",
|
| 132 |
+
minimum=0,
|
| 133 |
+
maximum=1,
|
| 134 |
+
step=0.01,
|
| 135 |
+
value=0.75,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
num_inference_steps_slider_component = gr.Slider(
|
| 139 |
+
label="Number of inference steps",
|
| 140 |
+
minimum=1,
|
| 141 |
+
maximum=50,
|
| 142 |
+
step=1,
|
| 143 |
+
value=20,
|
| 144 |
+
)
|
| 145 |
with gr.Column():
|
| 146 |
output_gallery_component = gr.Gallery(
|
| 147 |
columns=[1],
|
|
|
|
| 156 |
fn=process,
|
| 157 |
inputs=[
|
| 158 |
input_image_editor_component,
|
| 159 |
+
input_text_component,
|
| 160 |
+
seed_slicer_component,
|
| 161 |
+
randomize_seed_checkbox_component,
|
| 162 |
+
strength_slider_component,
|
| 163 |
+
num_inference_steps_slider_component
|
| 164 |
],
|
| 165 |
outputs=[
|
| 166 |
output_gallery_component
|