Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,20 @@
|
|
| 1 |
|
| 2 |
|
| 3 |
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
import torch
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
import gradio as gr
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
model_name = "ai4bharat/Airavata"
|
|
@@ -52,10 +60,40 @@ def inference(input_prompt, model, tokenizer):
|
|
| 52 |
return output_text
|
| 53 |
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
outputs = inference(message, model, tokenizer)
|
| 57 |
return outputs
|
| 58 |
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
|
| 4 |
+
import whisper
|
| 5 |
+
|
| 6 |
|
| 7 |
|
| 8 |
import torch
|
| 9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
+
|
| 13 |
+
Asr_model = whisper.load_model("base")
|
| 14 |
+
Asr_model.device
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
model_name = "ai4bharat/Airavata"
|
|
|
|
| 60 |
return output_text
|
| 61 |
|
| 62 |
|
| 63 |
+
|
| 64 |
+
def transcribe(audio):
|
| 65 |
+
|
| 66 |
+
#time.sleep(3)
|
| 67 |
+
# load audio and pad/trim it to fit 30 seconds
|
| 68 |
+
audio = whisper.load_audio(audio)
|
| 69 |
+
audio = whisper.pad_or_trim(audio)
|
| 70 |
+
|
| 71 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 72 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 73 |
+
|
| 74 |
+
# detect the spoken language
|
| 75 |
+
_, probs = model.detect_language(mel)
|
| 76 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
| 77 |
+
|
| 78 |
+
# decode the audio
|
| 79 |
+
options = whisper.DecodingOptions()
|
| 80 |
+
result = whisper.decode(model, mel, options)
|
| 81 |
+
return result.text
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def chat_interface(audio):
|
| 85 |
+
message = transcribe(audio)
|
| 86 |
outputs = inference(message, model, tokenizer)
|
| 87 |
return outputs
|
| 88 |
|
| 89 |
|
| 90 |
+
gr.Interface(
|
| 91 |
+
title = 'CAMAI - Centralized Actionable Multimodal Agri Assistant on Edge Intelligence for Farmers ',
|
| 92 |
+
fn=chat_interface,
|
| 93 |
+
inputs=[
|
| 94 |
+
gr.inputs.Audio(source="microphone", type="filepath")
|
| 95 |
+
],
|
| 96 |
+
outputs=[
|
| 97 |
+
"textbox"
|
| 98 |
+
],
|
| 99 |
+
live=True).launch()
|