Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,98 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
raise ValueError(
|
| 18 |
-
"Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
|
| 19 |
-
message["role"]
|
| 20 |
-
)
|
| 21 |
-
)
|
| 22 |
-
formatted_text += "\n"
|
| 23 |
-
formatted_text = bos + formatted_text if add_bos else formatted_text
|
| 24 |
-
return formatted_text
|
| 25 |
-
|
| 26 |
-
def inference(input_prompts, model, tokenizer):
|
| 27 |
-
input_prompts = [
|
| 28 |
-
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
| 29 |
-
for input_prompt in input_prompts
|
| 30 |
-
]
|
| 31 |
-
|
| 32 |
-
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
| 33 |
-
encodings = encodings.to(device)
|
| 34 |
-
|
| 35 |
-
with torch.no_grad():
|
| 36 |
-
outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)
|
| 37 |
-
|
| 38 |
-
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
| 39 |
-
|
| 40 |
-
input_prompts = [
|
| 41 |
-
tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
| 42 |
-
]
|
| 43 |
-
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
| 44 |
-
return output_texts
|
| 45 |
-
|
| 46 |
-
model_name = "ai4bharat/Airavata"
|
| 47 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
| 48 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 49 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
| 50 |
-
examples = [
|
| 51 |
-
["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
|
| 52 |
-
["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
|
| 53 |
-
["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
|
| 54 |
-
]
|
| 55 |
-
|
| 56 |
-
iface = gr.Chat(
|
| 57 |
-
model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
|
| 58 |
-
inputs=["text"],
|
| 59 |
outputs="text",
|
| 60 |
-
|
| 61 |
-
title="Airavata Chatbot",
|
| 62 |
-
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
|
| 5 |
+
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")
|
| 6 |
+
|
| 7 |
+
def generate_response(prompt):
|
| 8 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=50)
|
| 9 |
+
output_ids = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2)
|
| 10 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 11 |
+
return response
|
| 12 |
+
|
| 13 |
+
iface = gr.Interface(
|
| 14 |
+
fn=generate_response,
|
| 15 |
+
inputs="text",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
outputs="text",
|
| 17 |
+
live=True,
|
| 18 |
+
title="Airavata LLMs Chatbot",
|
| 19 |
+
description="Ask me anything, and I'll generate a response!",
|
| 20 |
+
theme="light",
|
| 21 |
)
|
| 22 |
|
| 23 |
iface.launch()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# import gradio as gr
|
| 35 |
+
# import torch
|
| 36 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 37 |
+
|
| 38 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
|
| 40 |
+
# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
| 41 |
+
# formatted_text = ""
|
| 42 |
+
# for message in messages:
|
| 43 |
+
# if message["role"] == "system":
|
| 44 |
+
# formatted_text += "\n" + message["content"] + "\n"
|
| 45 |
+
# elif message["role"] == "user":
|
| 46 |
+
# formatted_text += "\n" + message["content"] + "\n"
|
| 47 |
+
# elif message["role"] == "assistant":
|
| 48 |
+
# formatted_text += "\n" + message["content"].strip() + eos + "\n"
|
| 49 |
+
# else:
|
| 50 |
+
# raise ValueError(
|
| 51 |
+
# "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
|
| 52 |
+
# message["role"]
|
| 53 |
+
# )
|
| 54 |
+
# )
|
| 55 |
+
# formatted_text += "\n"
|
| 56 |
+
# formatted_text = bos + formatted_text if add_bos else formatted_text
|
| 57 |
+
# return formatted_text
|
| 58 |
+
|
| 59 |
+
# def inference(input_prompts, model, tokenizer):
|
| 60 |
+
# input_prompts = [
|
| 61 |
+
# create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
| 62 |
+
# for input_prompt in input_prompts
|
| 63 |
+
# ]
|
| 64 |
+
|
| 65 |
+
# encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
| 66 |
+
# encodings = encodings.to(device)
|
| 67 |
+
|
| 68 |
+
# with torch.no_grad():
|
| 69 |
+
# outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)
|
| 70 |
+
|
| 71 |
+
# output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
| 72 |
+
|
| 73 |
+
# input_prompts = [
|
| 74 |
+
# tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
| 75 |
+
# ]
|
| 76 |
+
# output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
| 77 |
+
# return output_texts
|
| 78 |
+
|
| 79 |
+
# model_name = "ai4bharat/Airavata"
|
| 80 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
| 81 |
+
# tokenizer.pad_token = tokenizer.eos_token
|
| 82 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
| 83 |
+
# examples = [
|
| 84 |
+
# ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
|
| 85 |
+
# ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
|
| 86 |
+
# ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
|
| 87 |
+
# ]
|
| 88 |
+
|
| 89 |
+
# iface = gr.Chat(
|
| 90 |
+
# model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
|
| 91 |
+
# inputs=["text"],
|
| 92 |
+
# outputs="text",
|
| 93 |
+
# examples=examples,
|
| 94 |
+
# title="Airavata Chatbot",
|
| 95 |
+
# theme="light", # Optional: Set a light theme
|
| 96 |
+
# )
|
| 97 |
+
|
| 98 |
+
# iface.launch()
|