Spaces:
Paused
Paused
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True): | |
| formatted_text = "" | |
| for message in messages: | |
| if message["role"] == "system": | |
| formatted_text += "<|system|>\n" + message["content"] + "\n" | |
| elif message["role"] == "user": | |
| formatted_text += "<|user|>\n" + message["content"] + "\n" | |
| elif message["role"] == "assistant": | |
| formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n" | |
| else: | |
| raise ValueError( | |
| "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format( | |
| message["role"] | |
| ) | |
| ) | |
| formatted_text += "<|assistant|>\n" | |
| formatted_text = bos + formatted_text if add_bos else formatted_text | |
| return formatted_text | |
| def inference(input_prompts, model, tokenizer): | |
| input_prompts = [ | |
| create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False) | |
| for input_prompt in input_prompts | |
| ] | |
| encodings = tokenizer(input_prompts, padding=True, return_tensors="pt") | |
| encodings = encodings.to(device) | |
| with torch.inference_mode(): | |
| outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250) | |
| output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) | |
| input_prompts = [ | |
| tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts | |
| ] | |
| output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)] | |
| return output_texts | |
| model_name = "ai4bharat/Airavata" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) | |
| examples= [ | |
| "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।", | |
| "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।", | |
| ] | |
| # outputs = inference(input_prompts, model, tokenizer) | |
| # print(outputs) | |
| gr.ChatInterface(fn=inference, | |
| examples = examples, | |
| title = "CAMAI ChatBot").launch() | |