Spaces:
Paused
Paused
| import time | |
| from typing import Callable, Optional, Union | |
| import litellm | |
| from litellm.litellm_core_utils.prompt_templates.factory import ( | |
| custom_prompt, | |
| prompt_factory, | |
| ) | |
| from litellm.llms.custom_httpx.http_handler import ( | |
| AsyncHTTPHandler, | |
| HTTPHandler, | |
| _get_httpx_client, | |
| ) | |
| from litellm.utils import ModelResponse, Usage | |
| from ..common_utils import PetalsError | |
| def completion( | |
| model: str, | |
| messages: list, | |
| api_base: Optional[str], | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| logging_obj, | |
| optional_params: dict, | |
| stream=False, | |
| litellm_params=None, | |
| logger_fn=None, | |
| client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None, | |
| ): | |
| ## Load Config | |
| config = litellm.PetalsConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > petals_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| if model in litellm.custom_prompt_dict: | |
| # check if the model has a registered custom prompt | |
| model_prompt_details = litellm.custom_prompt_dict[model] | |
| prompt = custom_prompt( | |
| role_dict=model_prompt_details["roles"], | |
| initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
| final_prompt_value=model_prompt_details["final_prompt_value"], | |
| messages=messages, | |
| ) | |
| else: | |
| prompt = prompt_factory(model=model, messages=messages) | |
| output_text: Optional[str] = None | |
| if api_base: | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key="", | |
| additional_args={ | |
| "complete_input_dict": optional_params, | |
| "api_base": api_base, | |
| }, | |
| ) | |
| data = {"model": model, "inputs": prompt, **optional_params} | |
| ## COMPLETION CALL | |
| if client is None or not isinstance(client, HTTPHandler): | |
| client = _get_httpx_client() | |
| response = client.post(api_base, data=data) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key="", | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": optional_params}, | |
| ) | |
| ## RESPONSE OBJECT | |
| try: | |
| output_text = response.json()["outputs"] | |
| except Exception as e: | |
| PetalsError( | |
| status_code=response.status_code, | |
| message=str(e), | |
| headers=response.headers, | |
| ) | |
| else: | |
| try: | |
| from petals import AutoDistributedModelForCausalLM # type: ignore | |
| from transformers import AutoTokenizer | |
| except Exception: | |
| raise Exception( | |
| "Importing torch, transformers, petals failed\nTry pip installing petals \npip install git+https://github.com/bigscience-workshop/petals" | |
| ) | |
| model = model | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model, use_fast=False, add_bos_token=False | |
| ) | |
| model_obj = AutoDistributedModelForCausalLM.from_pretrained(model) | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key="", | |
| additional_args={"complete_input_dict": optional_params}, | |
| ) | |
| ## COMPLETION CALL | |
| inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] | |
| # optional params: max_new_tokens=1,temperature=0.9, top_p=0.6 | |
| outputs = model_obj.generate(inputs, **optional_params) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key="", | |
| original_response=outputs, | |
| additional_args={"complete_input_dict": optional_params}, | |
| ) | |
| ## RESPONSE OBJECT | |
| output_text = tokenizer.decode(outputs[0]) | |
| if output_text is not None and len(output_text) > 0: | |
| model_response.choices[0].message.content = output_text # type: ignore | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content")) | |
| ) | |
| model_response.created = int(time.time()) | |
| model_response.model = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| setattr(model_response, "usage", usage) | |
| return model_response | |
| def embedding(): | |
| # logic for parsing in - calling - parsing out model embedding calls | |
| pass | |