Spaces:
Paused
Paused
| import json | |
| import time | |
| import types | |
| from typing import Callable, Optional | |
| import httpx # type: ignore | |
| import litellm | |
| from litellm.utils import Choices, Message, ModelResponse, Usage | |
| class AlephAlphaError(Exception): | |
| def __init__(self, status_code, message): | |
| self.status_code = status_code | |
| self.message = message | |
| self.request = httpx.Request( | |
| method="POST", url="https://api.aleph-alpha.com/complete" | |
| ) | |
| self.response = httpx.Response(status_code=status_code, request=self.request) | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class AlephAlphaConfig: | |
| """ | |
| Reference: https://docs.aleph-alpha.com/api/complete/ | |
| The `AlephAlphaConfig` class represents the configuration for the Aleph Alpha API. Here are the properties: | |
| - `maximum_tokens` (integer, required): The maximum number of tokens to be generated by the completion. The sum of input tokens and maximum tokens may not exceed 2048. | |
| - `minimum_tokens` (integer, optional; default value: 0): Generate at least this number of tokens before an end-of-text token is generated. | |
| - `echo` (boolean, optional; default value: false): Whether to echo the prompt in the completion. | |
| - `temperature` (number, nullable; default value: 0): Adjusts how creatively the model generates outputs. Use combinations of temperature, top_k, and top_p sensibly. | |
| - `top_k` (integer, nullable; default value: 0): Introduces randomness into token generation by considering the top k most likely options. | |
| - `top_p` (number, nullable; default value: 0): Adds randomness by considering the smallest set of tokens whose cumulative probability exceeds top_p. | |
| - `presence_penalty`, `frequency_penalty`, `sequence_penalty` (number, nullable; default value: 0): Various penalties that can reduce repetition. | |
| - `sequence_penalty_min_length` (integer; default value: 2): Minimum number of tokens to be considered as a sequence. | |
| - `repetition_penalties_include_prompt`, `repetition_penalties_include_completion`, `use_multiplicative_presence_penalty`,`use_multiplicative_frequency_penalty`,`use_multiplicative_sequence_penalty` (boolean, nullable; default value: false): Various settings that adjust how the repetition penalties are applied. | |
| - `penalty_bias` (string, nullable): Text used in addition to the penalized tokens for repetition penalties. | |
| - `penalty_exceptions` (string[], nullable): Strings that may be generated without penalty. | |
| - `penalty_exceptions_include_stop_sequences` (boolean, nullable; default value: true): Include all stop_sequences in penalty_exceptions. | |
| - `best_of` (integer, nullable; default value: 1): The number of completions will be generated on the server side. | |
| - `n` (integer, nullable; default value: 1): The number of completions to return. | |
| - `logit_bias` (object, nullable): Adjust the logit scores before sampling. | |
| - `log_probs` (integer, nullable): Number of top log probabilities for each token generated. | |
| - `stop_sequences` (string[], nullable): List of strings that will stop generation if they're generated. | |
| - `tokens` (boolean, nullable; default value: false): Flag indicating whether individual tokens of the completion should be returned or not. | |
| - `raw_completion` (boolean; default value: false): if True, the raw completion of the model will be returned. | |
| - `disable_optimizations` (boolean, nullable; default value: false): Disables any applied optimizations to both your prompt and completion. | |
| - `completion_bias_inclusion`, `completion_bias_exclusion` (string[], default value: []): Set of strings to bias the generation of tokens. | |
| - `completion_bias_inclusion_first_token_only`, `completion_bias_exclusion_first_token_only` (boolean; default value: false): Consider only the first token for the completion_bias_inclusion/exclusion. | |
| - `contextual_control_threshold` (number, nullable): Control over how similar tokens are controlled. | |
| - `control_log_additive` (boolean; default value: true): Method of applying control to attention scores. | |
| """ | |
| maximum_tokens: Optional[ | |
| int | |
| ] = litellm.max_tokens # aleph alpha requires max tokens | |
| minimum_tokens: Optional[int] = None | |
| echo: Optional[bool] = None | |
| temperature: Optional[int] = None | |
| top_k: Optional[int] = None | |
| top_p: Optional[int] = None | |
| presence_penalty: Optional[int] = None | |
| frequency_penalty: Optional[int] = None | |
| sequence_penalty: Optional[int] = None | |
| sequence_penalty_min_length: Optional[int] = None | |
| repetition_penalties_include_prompt: Optional[bool] = None | |
| repetition_penalties_include_completion: Optional[bool] = None | |
| use_multiplicative_presence_penalty: Optional[bool] = None | |
| use_multiplicative_frequency_penalty: Optional[bool] = None | |
| use_multiplicative_sequence_penalty: Optional[bool] = None | |
| penalty_bias: Optional[str] = None | |
| penalty_exceptions_include_stop_sequences: Optional[bool] = None | |
| best_of: Optional[int] = None | |
| n: Optional[int] = None | |
| logit_bias: Optional[dict] = None | |
| log_probs: Optional[int] = None | |
| stop_sequences: Optional[list] = None | |
| tokens: Optional[bool] = None | |
| raw_completion: Optional[bool] = None | |
| disable_optimizations: Optional[bool] = None | |
| completion_bias_inclusion: Optional[list] = None | |
| completion_bias_exclusion: Optional[list] = None | |
| completion_bias_inclusion_first_token_only: Optional[bool] = None | |
| completion_bias_exclusion_first_token_only: Optional[bool] = None | |
| contextual_control_threshold: Optional[int] = None | |
| control_log_additive: Optional[bool] = None | |
| def __init__( | |
| self, | |
| maximum_tokens: Optional[int] = None, | |
| minimum_tokens: Optional[int] = None, | |
| echo: Optional[bool] = None, | |
| temperature: Optional[int] = None, | |
| top_k: Optional[int] = None, | |
| top_p: Optional[int] = None, | |
| presence_penalty: Optional[int] = None, | |
| frequency_penalty: Optional[int] = None, | |
| sequence_penalty: Optional[int] = None, | |
| sequence_penalty_min_length: Optional[int] = None, | |
| repetition_penalties_include_prompt: Optional[bool] = None, | |
| repetition_penalties_include_completion: Optional[bool] = None, | |
| use_multiplicative_presence_penalty: Optional[bool] = None, | |
| use_multiplicative_frequency_penalty: Optional[bool] = None, | |
| use_multiplicative_sequence_penalty: Optional[bool] = None, | |
| penalty_bias: Optional[str] = None, | |
| penalty_exceptions_include_stop_sequences: Optional[bool] = None, | |
| best_of: Optional[int] = None, | |
| n: Optional[int] = None, | |
| logit_bias: Optional[dict] = None, | |
| log_probs: Optional[int] = None, | |
| stop_sequences: Optional[list] = None, | |
| tokens: Optional[bool] = None, | |
| raw_completion: Optional[bool] = None, | |
| disable_optimizations: Optional[bool] = None, | |
| completion_bias_inclusion: Optional[list] = None, | |
| completion_bias_exclusion: Optional[list] = None, | |
| completion_bias_inclusion_first_token_only: Optional[bool] = None, | |
| completion_bias_exclusion_first_token_only: Optional[bool] = None, | |
| contextual_control_threshold: Optional[int] = None, | |
| control_log_additive: Optional[bool] = None, | |
| ) -> None: | |
| locals_ = locals().copy() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| def validate_environment(api_key): | |
| headers = { | |
| "accept": "application/json", | |
| "content-type": "application/json", | |
| } | |
| if api_key: | |
| headers["Authorization"] = f"Bearer {api_key}" | |
| return headers | |
| def completion( | |
| model: str, | |
| messages: list, | |
| api_base: str, | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| api_key, | |
| logging_obj, | |
| optional_params: dict, | |
| litellm_params=None, | |
| logger_fn=None, | |
| default_max_tokens_to_sample=None, | |
| ): | |
| headers = validate_environment(api_key) | |
| ## Load Config | |
| config = litellm.AlephAlphaConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > aleph_alpha_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| completion_url = api_base | |
| model = model | |
| prompt = "" | |
| if "control" in model: # follow the ###Instruction / ###Response format | |
| for idx, message in enumerate(messages): | |
| if "role" in message: | |
| if ( | |
| idx == 0 | |
| ): # set first message as instruction (required), let later user messages be input | |
| prompt += f"###Instruction: {message['content']}" | |
| else: | |
| if message["role"] == "system": | |
| prompt += f"###Instruction: {message['content']}" | |
| elif message["role"] == "user": | |
| prompt += f"###Input: {message['content']}" | |
| else: | |
| prompt += f"###Response: {message['content']}" | |
| else: | |
| prompt += f"{message['content']}" | |
| else: | |
| prompt = " ".join(message["content"] for message in messages) | |
| data = { | |
| "model": model, | |
| "prompt": prompt, | |
| **optional_params, | |
| } | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| ## COMPLETION CALL | |
| response = litellm.module_level_client.post( | |
| completion_url, | |
| headers=headers, | |
| data=json.dumps(data), | |
| stream=optional_params["stream"] if "stream" in optional_params else False, | |
| ) | |
| if "stream" in optional_params and optional_params["stream"] is True: | |
| return response.iter_lines() | |
| else: | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key=api_key, | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response.text}") | |
| ## RESPONSE OBJECT | |
| completion_response = response.json() | |
| if "error" in completion_response: | |
| raise AlephAlphaError( | |
| message=completion_response["error"], | |
| status_code=response.status_code, | |
| ) | |
| else: | |
| try: | |
| choices_list = [] | |
| for idx, item in enumerate(completion_response["completions"]): | |
| if len(item["completion"]) > 0: | |
| message_obj = Message(content=item["completion"]) | |
| else: | |
| message_obj = Message(content=None) | |
| choice_obj = Choices( | |
| finish_reason=item["finish_reason"], | |
| index=idx + 1, | |
| message=message_obj, | |
| ) | |
| choices_list.append(choice_obj) | |
| model_response.choices = choices_list # type: ignore | |
| except Exception: | |
| raise AlephAlphaError( | |
| message=json.dumps(completion_response), | |
| status_code=response.status_code, | |
| ) | |
| ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode( | |
| model_response["choices"][0]["message"]["content"], | |
| disallowed_special=(), | |
| ) | |
| ) | |
| model_response.created = int(time.time()) | |
| model_response.model = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| setattr(model_response, "usage", usage) | |
| return model_response | |
| def embedding(): | |
| # logic for parsing in - calling - parsing out model embedding calls | |
| pass | |