Spaces:
Paused
Paused
| """ | |
| Transformation logic from OpenAI /v1/embeddings format to Bedrock Amazon Titan G1 /invoke format. | |
| Why separate file? Make it easy to see how transformation works | |
| Convers | |
| - G1 request format | |
| Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html | |
| """ | |
| import types | |
| from typing import List | |
| from litellm.types.llms.bedrock import ( | |
| AmazonTitanG1EmbeddingRequest, | |
| AmazonTitanG1EmbeddingResponse, | |
| ) | |
| from litellm.types.utils import Embedding, EmbeddingResponse, Usage | |
| class AmazonTitanG1Config: | |
| """ | |
| Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html | |
| """ | |
| def __init__( | |
| self, | |
| ) -> None: | |
| locals_ = locals().copy() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| def get_supported_openai_params(self) -> List[str]: | |
| return [] | |
| def map_openai_params( | |
| self, non_default_params: dict, optional_params: dict | |
| ) -> dict: | |
| return optional_params | |
| def _transform_request( | |
| self, input: str, inference_params: dict | |
| ) -> AmazonTitanG1EmbeddingRequest: | |
| return AmazonTitanG1EmbeddingRequest(inputText=input) | |
| def _transform_response( | |
| self, response_list: List[dict], model: str | |
| ) -> EmbeddingResponse: | |
| total_prompt_tokens = 0 | |
| transformed_responses: List[Embedding] = [] | |
| for index, response in enumerate(response_list): | |
| _parsed_response = AmazonTitanG1EmbeddingResponse(**response) # type: ignore | |
| transformed_responses.append( | |
| Embedding( | |
| embedding=_parsed_response["embedding"], | |
| index=index, | |
| object="embedding", | |
| ) | |
| ) | |
| total_prompt_tokens += _parsed_response["inputTextTokenCount"] | |
| usage = Usage( | |
| prompt_tokens=total_prompt_tokens, | |
| completion_tokens=0, | |
| total_tokens=total_prompt_tokens, | |
| ) | |
| return EmbeddingResponse(model=model, usage=usage, data=transformed_responses) | |