import gradio as gr from transformers import pipeline summarizer_en = pipeline("summarization", model="facebook/bart-large-cnn") summarizer_ar = pipeline("translation", model="Helsinki-NLP/opus-mt-ar-en") translator_ar = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ar") def summarize_text(text, language): if not text.strip(): return " الرجاء إدخال نص للتلخيص." if language == "العربية": translated_text = summarizer_ar(text)[0]['translation_text'] summary = summarizer_en(translated_text, min_length=10, max_length=100, do_sample=False) final_summary = translator_ar(summary[0]['summary_text'])[0]['translation_text'] else: summary = summarizer_en(text, min_length=10, max_length=100, do_sample=False) final_summary = summary[0]['summary_text'] return final_summary # Gradio with gr.Blocks() as demo: gr.Markdown("# Text Summarization App") gr.Markdown("Enter a long text below, choose the language, and get a summarized version!") input_text = gr.Textbox(label="Input Text", placeholder="Enter your text here ^^ ...") language = gr.Dropdown(choices=["العربية", "English"], value="English", label="Select Language") summarize_btn = gr.Button("Summarize") output_text = gr.Textbox(label="Summarized Text", interactive=False) summarize_btn.click(summarize_text, inputs=[input_text, language], outputs=output_text) if __name__ == "__main__": demo.launch()