Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,24 @@
|
|
| 1 |
-
# !pip install gradio
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from transformers import pipeline
|
| 6 |
from huggingface_hub import InferenceClient
|
| 7 |
-
|
| 8 |
from PIL import Image
|
| 9 |
import numpy as np
|
| 10 |
import cv2
|
| 11 |
|
| 12 |
|
| 13 |
# Инициализация моделей
|
| 14 |
-
# segmentation = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640")
|
| 15 |
-
classification = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 16 |
-
upscaling_client = InferenceClient(model="stabilityai/stable-diffusion-x4-upscaler")
|
| 17 |
-
inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
|
| 18 |
-
trellis_client = InferenceClient(model="microsoft/TRELLIS")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
|
| 22 |
-
import torch
|
| 23 |
-
from PIL import Image
|
| 24 |
-
import numpy as np
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
-
processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
|
| 28 |
-
model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny").to(device)
|
| 29 |
-
|
| 30 |
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
# Функции для обработки изображений
|
|
@@ -38,15 +28,13 @@ import numpy as np
|
|
| 38 |
|
| 39 |
def segment_image(image):
|
| 40 |
image = Image.fromarray(image)
|
| 41 |
-
|
| 42 |
-
# Изменяем task_input на "panoptic"
|
| 43 |
-
inputs = processor(image, task_inputs=["panoptic"], return_tensors="pt")
|
| 44 |
|
| 45 |
with torch.no_grad():
|
| 46 |
-
outputs =
|
| 47 |
|
| 48 |
# post-process the raw predictions
|
| 49 |
-
predicted_panoptic_map =
|
| 50 |
|
| 51 |
# Extract segment ids and masks
|
| 52 |
segmentation_map = predicted_panoptic_map["segmentation"].cpu().numpy()
|
|
@@ -58,9 +46,13 @@ def segment_image(image):
|
|
| 58 |
|
| 59 |
for segment in segments_info:
|
| 60 |
mask = (segmentation_map == segment["id"]).astype(np.uint8) * 255
|
| 61 |
-
cropped_image = cv2.bitwise_and(np.array(image), np.array(image), mask=mask)
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Check if label already exists
|
| 66 |
if label in label_counts:
|
|
@@ -73,105 +65,174 @@ def segment_image(image):
|
|
| 73 |
|
| 74 |
return cropped_masks_with_labels
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
def merge_segments_by_labels(gallery_images, labels_input):
|
| 77 |
-
"""
|
| 78 |
-
Объединяет сегменты из галереи изображений в одно изображение,
|
| 79 |
-
основываясь на введенных пользователем метках.
|
| 80 |
-
|
| 81 |
-
Args:
|
| 82 |
-
gallery_images: Список изображений сегментов (кортежи (изображение, метка)).
|
| 83 |
-
labels_input: Строка с метками, разделенными точкой с запятой.
|
| 84 |
-
|
| 85 |
-
Returns:
|
| 86 |
-
Список изображений, где выбранные сегменты объединены в одно.
|
| 87 |
-
"""
|
| 88 |
-
# 1. Разделяем входную строку с метками на список
|
| 89 |
labels_to_merge = [label.strip() for label in labels_input.split(";")]
|
| 90 |
-
|
| 91 |
-
# 2. Создаем пустое изображение для объединения
|
| 92 |
merged_image = None
|
| 93 |
-
|
| 94 |
-
# 3. Инициализируем список для хранения индексов объединенных сегментов
|
| 95 |
merged_indices = []
|
| 96 |
|
| 97 |
-
|
| 98 |
-
for i, (image_path, label) in enumerate(gallery_images):
|
| 99 |
-
# 5. Если метка сегмента в списке меток для объединения
|
| 100 |
if label in labels_to_merge:
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
if merged_image is None:
|
| 104 |
-
# 7. Создаем копию изображения как основу для объединения
|
| 105 |
merged_image = image.copy()
|
| 106 |
else:
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
# предполагая, что сегменты не перекрываются
|
| 110 |
-
merged_image = cv2.add(merged_image, image)
|
| 111 |
-
|
| 112 |
-
# 9. Добавляем индекс объединенного сегмента в список
|
| 113 |
merged_indices.append(i)
|
| 114 |
|
| 115 |
-
# 10. Если сегменты были объединены
|
| 116 |
if merged_image is not None:
|
| 117 |
-
#
|
| 118 |
-
|
|
|
|
| 119 |
new_gallery_images = [
|
| 120 |
item for i, item in enumerate(gallery_images) if i not in merged_indices
|
| 121 |
]
|
| 122 |
-
|
| 123 |
new_name = labels_to_merge[0]
|
| 124 |
-
new_gallery_images.append((
|
| 125 |
-
|
| 126 |
return new_gallery_images
|
| 127 |
else:
|
| 128 |
-
# 12. Если не было меток для объединения, возвращаем исходный список
|
| 129 |
return gallery_images
|
| 130 |
|
| 131 |
-
def set_client_for_session(request: gr.Request):
|
| 132 |
-
x_ip_token = request.headers['x-ip-token']
|
| 133 |
-
# The "JeffreyXiang/TRELLIS" space is a ZeroGPU space
|
| 134 |
-
return Client("JeffreyXiang/TRELLIS", headers={"X-IP-Token": x_ip_token})
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
def generate_3d_model(client, segment_output, segment_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
for i, (image_path, label) in enumerate(segment_output):
|
| 139 |
if label == segment_name:
|
| 140 |
result = client.predict(
|
| 141 |
image=handle_file(image_path),
|
| 142 |
-
|
| 143 |
-
seed=0,
|
| 144 |
-
ss_guidance_strength=7.5,
|
| 145 |
-
ss_sampling_steps=12,
|
| 146 |
-
slat_guidance_strength=3,
|
| 147 |
-
slat_sampling_steps=12,
|
| 148 |
-
multiimage_algo="stochastic",
|
| 149 |
-
api_name="/image_to_3d"
|
| 150 |
)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
return result["video"]
|
| 154 |
|
| 155 |
-
def classify_segments(segments):
|
| 156 |
-
# Предполагается, что segments - список изображений сегментов
|
| 157 |
-
results = []
|
| 158 |
-
for segment in segments:
|
| 159 |
-
results.append(classification(segment))
|
| 160 |
-
return results # Вернем список классификаций
|
| 161 |
|
| 162 |
-
def
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
def
|
| 167 |
-
|
| 168 |
-
|
| 169 |
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
|
|
|
| 172 |
|
| 173 |
with gr.Blocks() as demo:
|
| 174 |
-
|
|
|
|
| 175 |
|
| 176 |
gr.Markdown("# Анализ и редактирование помещений")
|
| 177 |
|
|
@@ -188,32 +249,50 @@ with gr.Blocks() as demo:
|
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column(scale=5):
|
| 190 |
trellis_input = gr.Textbox(label="Имя сегмента для 3D")
|
| 191 |
-
|
|
|
|
|
|
|
| 192 |
with gr.Column(scale=5):
|
| 193 |
-
trellis_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
segment_button.click(segment_image, inputs=image_input, outputs=segment_output)
|
| 197 |
# segment_button.click(segment_full_image, inputs=image_input, outputs=segment_output)
|
| 198 |
|
| 199 |
-
with gr.Tab("Редактирование"):
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
with gr.Tab("Создание 3D моделей"):
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
demo.load(
|
|
|
|
| 218 |
|
| 219 |
demo.launch(debug=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import pipeline
|
| 4 |
from huggingface_hub import InferenceClient
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
import cv2
|
| 8 |
|
| 9 |
|
| 10 |
# Инициализация моделей
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# oneFormer segmentation
|
| 16 |
+
oneFormer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny")
|
| 17 |
+
oneFormer_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny").to(device)
|
| 18 |
|
| 19 |
+
# classification = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 20 |
+
# upscaling_client = InferenceClient(model="stabilityai/stable-diffusion-x4-upscaler")
|
| 21 |
+
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
|
| 22 |
|
| 23 |
|
| 24 |
# Функции для обработки изображений
|
|
|
|
| 28 |
|
| 29 |
def segment_image(image):
|
| 30 |
image = Image.fromarray(image)
|
| 31 |
+
inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")
|
|
|
|
|
|
|
| 32 |
|
| 33 |
with torch.no_grad():
|
| 34 |
+
outputs = oneFormer_model(**inputs)
|
| 35 |
|
| 36 |
# post-process the raw predictions
|
| 37 |
+
predicted_panoptic_map = oneFormer_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 38 |
|
| 39 |
# Extract segment ids and masks
|
| 40 |
segmentation_map = predicted_panoptic_map["segmentation"].cpu().numpy()
|
|
|
|
| 46 |
|
| 47 |
for segment in segments_info:
|
| 48 |
mask = (segmentation_map == segment["id"]).astype(np.uint8) * 255
|
| 49 |
+
# cropped_image = cv2.bitwise_and(np.array(image), np.array(image), mask=mask)
|
| 50 |
|
| 51 |
+
cropped_image = np.zeros((image.height, image.width, 4), dtype=np.uint8)
|
| 52 |
+
cropped_image[mask != 0, :3] = np.array(image)[mask != 0]
|
| 53 |
+
cropped_image[mask != 0, 3] = 255
|
| 54 |
+
|
| 55 |
+
label = oneFormer_model.config.id2label[segment["label_id"]]
|
| 56 |
|
| 57 |
# Check if label already exists
|
| 58 |
if label in label_counts:
|
|
|
|
| 65 |
|
| 66 |
return cropped_masks_with_labels
|
| 67 |
|
| 68 |
+
# def merge_segments_by_labels(gallery_images, labels_input):
|
| 69 |
+
# """
|
| 70 |
+
# Объединяет сегменты из галереи изображений в одно изображение,
|
| 71 |
+
# основываясь на введенных пользователем метках.
|
| 72 |
+
|
| 73 |
+
# Args:
|
| 74 |
+
# gallery_images: Список изображений сегментов (кортежи (изображение, метка)).
|
| 75 |
+
# labels_input: Строка с метками, разделенными точкой с запятой.
|
| 76 |
+
|
| 77 |
+
# Returns:
|
| 78 |
+
# Список изображений, где выбранные сегменты объединены в одно.
|
| 79 |
+
# """
|
| 80 |
+
# labels_to_merge = [label.strip() for label in labels_input.split(";")]
|
| 81 |
+
# merged_image = None
|
| 82 |
+
# merged_indices = []
|
| 83 |
+
|
| 84 |
+
# for i, (image_path, label) in enumerate(gallery_images):
|
| 85 |
+
# if label in labels_to_merge:
|
| 86 |
+
# image = cv2.imread(image_path)
|
| 87 |
+
# if merged_image is None:
|
| 88 |
+
# merged_image = image.copy()
|
| 89 |
+
# else:
|
| 90 |
+
# merged_image = cv2.add(merged_image, image)
|
| 91 |
+
# merged_indices.append(i)
|
| 92 |
+
# if merged_image is not None:
|
| 93 |
+
# new_gallery_images = [
|
| 94 |
+
# item for i, item in enumerate(gallery_images) if i not in merged_indices
|
| 95 |
+
# ]
|
| 96 |
+
|
| 97 |
+
# new_name = labels_to_merge[0]
|
| 98 |
+
# new_gallery_images.append((merged_image, new_name))
|
| 99 |
+
|
| 100 |
+
# return new_gallery_images
|
| 101 |
+
# else:
|
| 102 |
+
# return gallery_images
|
| 103 |
+
|
| 104 |
+
|
| 105 |
def merge_segments_by_labels(gallery_images, labels_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
labels_to_merge = [label.strip() for label in labels_input.split(";")]
|
|
|
|
|
|
|
| 107 |
merged_image = None
|
|
|
|
|
|
|
| 108 |
merged_indices = []
|
| 109 |
|
| 110 |
+
for i, (image_path, label) in enumerate(gallery_images): # Исправлено: image_path
|
|
|
|
|
|
|
| 111 |
if label in labels_to_merge:
|
| 112 |
+
# Загружаем изображение с помощью PIL, сохраняя альфа-канал
|
| 113 |
+
image = Image.open(image_path).convert("RGBA")
|
| 114 |
+
|
| 115 |
if merged_image is None:
|
|
|
|
| 116 |
merged_image = image.copy()
|
| 117 |
else:
|
| 118 |
+
# Объединяем изображения с учетом альфа-канала
|
| 119 |
+
merged_image = Image.alpha_composite(merged_image, image)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
merged_indices.append(i)
|
| 121 |
|
|
|
|
| 122 |
if merged_image is not None:
|
| 123 |
+
# Преобразуем объединенное изображение в numpy array
|
| 124 |
+
merged_image_np = np.array(merged_image)
|
| 125 |
+
|
| 126 |
new_gallery_images = [
|
| 127 |
item for i, item in enumerate(gallery_images) if i not in merged_indices
|
| 128 |
]
|
|
|
|
| 129 |
new_name = labels_to_merge[0]
|
| 130 |
+
new_gallery_images.append((merged_image_np, new_name))
|
|
|
|
| 131 |
return new_gallery_images
|
| 132 |
else:
|
|
|
|
| 133 |
return gallery_images
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# def set_client_for_session(request: gr.Request):
|
| 137 |
+
# x_ip_token = request.headers['x-ip-token']
|
| 138 |
+
# return Client("JeffreyXiang/TRELLIS", headers={"X-IP-Token": x_ip_token})
|
| 139 |
+
|
| 140 |
+
def set_hunyuan_client(request: gr.Request):
|
| 141 |
+
try:
|
| 142 |
+
x_ip_token = request.headers['x-ip-token']
|
| 143 |
+
return Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": x_ip_token})
|
| 144 |
+
except:
|
| 145 |
+
return Client("tencent/Hunyuan3D-2")
|
| 146 |
+
|
| 147 |
+
def set_vFusion_client(request: gr.Request):
|
| 148 |
+
try:
|
| 149 |
+
x_ip_token = request.headers['x-ip-token']
|
| 150 |
+
return Client("facebook/VFusion3D", headers={"X-IP-Token": x_ip_token})
|
| 151 |
+
except:
|
| 152 |
+
return Client("facebook/VFusion3D")
|
| 153 |
+
|
| 154 |
+
# def generate_3d_model(client, segment_output, segment_name):
|
| 155 |
+
# for i, (image_path, label) in enumerate(segment_output):
|
| 156 |
+
# if label == segment_name:
|
| 157 |
+
# result = client.predict(
|
| 158 |
+
# image=handle_file(image_path),
|
| 159 |
+
# multiimages=[],
|
| 160 |
+
# seed=0,
|
| 161 |
+
# ss_guidance_strength=7.5,
|
| 162 |
+
# ss_sampling_steps=12,
|
| 163 |
+
# slat_guidance_strength=3,
|
| 164 |
+
# slat_sampling_steps=12,
|
| 165 |
+
# multiimage_algo="stochastic",
|
| 166 |
+
# api_name="/image_to_3d"
|
| 167 |
+
# )
|
| 168 |
+
# break
|
| 169 |
+
# print(result)
|
| 170 |
+
# return result["video"]
|
| 171 |
|
| 172 |
def generate_3d_model(client, segment_output, segment_name):
|
| 173 |
+
for i, (image_path, label) in enumerate(segment_output):
|
| 174 |
+
if label == segment_name:
|
| 175 |
+
result = client.predict(
|
| 176 |
+
caption="",
|
| 177 |
+
image=handle_file(image_path),
|
| 178 |
+
steps=50,
|
| 179 |
+
guidance_scale=5.5,
|
| 180 |
+
seed=1234,
|
| 181 |
+
octree_resolution="256",
|
| 182 |
+
check_box_rembg=True,
|
| 183 |
+
api_name="/shape_generation"
|
| 184 |
+
)
|
| 185 |
+
print(result)
|
| 186 |
+
return result[0]
|
| 187 |
+
|
| 188 |
+
def generate_3d_model_texture(client, segment_output, segment_name):
|
| 189 |
+
for i, (image_path, label) in enumerate(segment_output):
|
| 190 |
+
if label == segment_name:
|
| 191 |
+
result = client.predict(
|
| 192 |
+
caption="",
|
| 193 |
+
image=handle_file(image_path),
|
| 194 |
+
steps=50,
|
| 195 |
+
guidance_scale=5.5,
|
| 196 |
+
seed=1234,
|
| 197 |
+
octree_resolution="256",
|
| 198 |
+
check_box_rembg=True,
|
| 199 |
+
api_name="/generation_all"
|
| 200 |
+
)
|
| 201 |
+
print(result)
|
| 202 |
+
return result[1]
|
| 203 |
+
|
| 204 |
+
def generate_3d_model2(client, segment_output, segment_name):
|
| 205 |
for i, (image_path, label) in enumerate(segment_output):
|
| 206 |
if label == segment_name:
|
| 207 |
result = client.predict(
|
| 208 |
image=handle_file(image_path),
|
| 209 |
+
api_name="/step_1_generate_obj"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
)
|
| 211 |
+
print(result)
|
| 212 |
+
return result[0]
|
|
|
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
# def classify_segments(segments):
|
| 216 |
+
# # Предполагается, что segments - список изображений сегментов
|
| 217 |
+
# results = []
|
| 218 |
+
# for segment in segments:
|
| 219 |
+
# results.append(classification(segment))
|
| 220 |
+
# return results # Вернем список классификаций
|
| 221 |
|
| 222 |
+
# def upscale_segment(segment):
|
| 223 |
+
# upscaled = upscaling_client.image_to_image(segment)
|
| 224 |
+
# return upscaled
|
| 225 |
|
| 226 |
+
# def inpaint_image(image, mask, prompt):
|
| 227 |
+
# inpainted = inpainting_client.text_to_image(prompt, image=image, mask=mask)
|
| 228 |
+
# return inpainted
|
| 229 |
|
| 230 |
|
| 231 |
+
from gradio_litmodel3d import LitModel3D
|
| 232 |
|
| 233 |
with gr.Blocks() as demo:
|
| 234 |
+
hunyuan_client = gr.State()
|
| 235 |
+
vFusion_client = gr.State()
|
| 236 |
|
| 237 |
gr.Markdown("# Анализ и редактирование помещений")
|
| 238 |
|
|
|
|
| 249 |
with gr.Row():
|
| 250 |
with gr.Column(scale=5):
|
| 251 |
trellis_input = gr.Textbox(label="Имя сегмента для 3D")
|
| 252 |
+
hunyuan_button = gr.Button("Hunyuan3D-2")
|
| 253 |
+
hunyuan_button_texture = gr.Button("Hunyuan3D-2 (with texture)")
|
| 254 |
+
vFusion_button = gr.Button("VFusion3D")
|
| 255 |
with gr.Column(scale=5):
|
| 256 |
+
# trellis_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 257 |
+
trellis_output2 = LitModel3D(
|
| 258 |
+
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
|
| 259 |
+
label="3D Model Visualization",
|
| 260 |
+
scale=1.0,
|
| 261 |
+
tonemapping="aces", # can use aces tonemapping for more realistic lighting
|
| 262 |
+
exposure=1.0, # can adjust exposure to control brightness
|
| 263 |
+
contrast=1.1, # can slightly increase contrast for better depth
|
| 264 |
+
camera_position=(0, 0, 2), # will set initial camera position to center the model
|
| 265 |
+
zoom_speed=0.5, # will adjust zoom speed for better control
|
| 266 |
+
pan_speed=0.5, # will adjust pan speed for better control
|
| 267 |
+
interactive=True # this allow users to interact with the model
|
| 268 |
+
)
|
| 269 |
+
# trellis_button.click(generate_3d_model, inputs=[client, segment_output, trellis_input], outputs=trellis_output)
|
| 270 |
+
hunyuan_button.click(generate_3d_model, inputs=[hunyuan_client, segment_output, trellis_input], outputs=trellis_output2)
|
| 271 |
+
hunyuan_button_texture.click(generate_3d_model_texture, inputs=[hunyuan_client, segment_output, trellis_input], outputs=trellis_output2)
|
| 272 |
+
vFusion_button.click(generate_3d_model2, inputs=[vFusion_client, segment_output, trellis_input], outputs=trellis_output2)
|
| 273 |
|
| 274 |
segment_button.click(segment_image, inputs=image_input, outputs=segment_output)
|
| 275 |
# segment_button.click(segment_full_image, inputs=image_input, outputs=segment_output)
|
| 276 |
|
| 277 |
+
# with gr.Tab("Редактирование"):
|
| 278 |
+
# segment_input = gr.Image()
|
| 279 |
+
# upscale_output = gr.Image()
|
| 280 |
+
# upscale_button = gr.Button("Upscale")
|
| 281 |
+
# upscale_button.click(upscale_segment, inputs=segment_input, outputs=upscale_output)
|
| 282 |
+
|
| 283 |
+
# mask_input = gr.Image()
|
| 284 |
+
# prompt_input = gr.Textbox()
|
| 285 |
+
# inpaint_output = gr.Image()
|
| 286 |
+
# inpaint_button = gr.Button("Inpaint")
|
| 287 |
+
# inpaint_button.click(inpaint_image, inputs=[segment_input, mask_input, prompt_input], outputs=inpaint_output)
|
| 288 |
+
|
| 289 |
+
# with gr.Tab("Создание 3D моделей"):
|
| 290 |
+
# segment_input_3d = gr.Image()
|
| 291 |
+
# model_output = gr.File()
|
| 292 |
+
# model_button = gr.Button("Создать 3D модель")
|
| 293 |
+
# model_button.click(generate_3d_model, inputs=segment_input_3d, outputs=model_output)
|
| 294 |
+
|
| 295 |
+
demo.load(set_hunyuan_client, None, hunyuan_client)
|
| 296 |
+
demo.load(set_vFusion_client, None, vFusion_client)
|
| 297 |
|
| 298 |
demo.launch(debug=True, show_error=True)
|