Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update main to disable super-res due to api change
Browse files
main.py
CHANGED
|
@@ -3,8 +3,7 @@ import torch
|
|
| 3 |
import pickle
|
| 4 |
from torchvision.utils import save_image
|
| 5 |
import numpy as np
|
| 6 |
-
|
| 7 |
-
with open('../concept_checkpoints/augceleba_4838.pkl', 'rb') as f:
|
| 8 |
G = pickle.load(f)['G_ema'].cpu().float() # torch.nn.Module
|
| 9 |
|
| 10 |
|
|
@@ -44,26 +43,19 @@ cchoices = [
|
|
| 44 |
import requests
|
| 45 |
from PIL import Image
|
| 46 |
from io import BytesIO
|
| 47 |
-
from diffusers import LDMSuperResolutionPipeline
|
| 48 |
import torch
|
| 49 |
|
| 50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
| 52 |
|
| 53 |
# load model and scheduler
|
| 54 |
-
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
| 55 |
-
pipeline = pipeline.to(device)
|
| 56 |
-
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
| 57 |
-
pipeline = StableDiffusionUpscalePipeline.from_pretrained(
|
| 58 |
-
model_id, variant="fp32", torch_dtype=torch.float32
|
| 59 |
-
)
|
| 60 |
# let's download an image
|
| 61 |
|
| 62 |
|
| 63 |
-
def super_res(low_res_img):
|
| 64 |
# run pipeline in inference (sample random noise and denoise)
|
| 65 |
-
|
| 66 |
-
upscaled_image =
|
| 67 |
return upscaled_image
|
| 68 |
|
| 69 |
|
|
@@ -82,7 +74,7 @@ def generate(seed, *checkboxes):
|
|
| 82 |
elif i == 4:
|
| 83 |
checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
|
| 84 |
elif i == 5:
|
| 85 |
-
checkboxes_vector[cchoices.index('Young')] = checkboxes[i]
|
| 86 |
elif i == 6:
|
| 87 |
checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
|
| 88 |
elif i == 9:
|
|
@@ -90,13 +82,13 @@ def generate(seed, *checkboxes):
|
|
| 90 |
elif i == 10:
|
| 91 |
checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
|
| 92 |
elif i == 11:
|
| 93 |
-
checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i]
|
| 94 |
elif i == 12:
|
| 95 |
checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
|
| 96 |
elif i == 13:
|
| 97 |
checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
|
| 98 |
elif i == 14:
|
| 99 |
-
checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] *
|
| 100 |
|
| 101 |
|
| 102 |
is_young = checkboxes[5]
|
|
@@ -105,10 +97,10 @@ def generate(seed, *checkboxes):
|
|
| 105 |
is_goatee = checkboxes[7]
|
| 106 |
is_mustache = checkboxes[8]
|
| 107 |
|
| 108 |
-
checkboxes_vector[12] = is_mustache *
|
| 109 |
-
checkboxes_vector[13] = is_mustache *
|
| 110 |
-
checkboxes_vector[14] = is_goatee *
|
| 111 |
-
checkboxes_vector[15] = is_goatee*
|
| 112 |
|
| 113 |
checkboxes_vector[16] = is_bald
|
| 114 |
checkboxes_vector[17] = is_bald
|
|
@@ -122,48 +114,54 @@ def generate(seed, *checkboxes):
|
|
| 122 |
m = checkboxes_vector.view(1, 20)
|
| 123 |
ws = G.mapping(z, m, truncation_psi=0.5)
|
| 124 |
img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
# Create the interface using gr.Blocks
|
| 132 |
with gr.Blocks() as demo:
|
| 133 |
with gr.Row():
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
]
|
| 141 |
|
| 142 |
with gr.Row():
|
| 143 |
-
sliders += [gr.Slider(label='Young', minimum=0, maximum=1, step=0.01)]
|
| 144 |
-
sliders += [gr.Slider(label='Male', minimum=0, maximum=1, step=0.01)]
|
| 145 |
|
| 146 |
with gr.Row():
|
| 147 |
-
sliders += [gr.Slider(label='Goatee', minimum=0, maximum=1, step=0.01)]
|
| 148 |
-
sliders += [gr.Slider(label='Mustache', minimum=0, maximum=1, step=0.01)]
|
| 149 |
|
| 150 |
with gr.Row():
|
| 151 |
sliders += [
|
| 152 |
-
gr.Slider(label='Big Nose', minimum=0, maximum=1, step=0.01),
|
| 153 |
-
gr.Slider(label='Chubby', minimum=0, maximum=1, step=0.01),
|
| 154 |
-
gr.Slider(label='Eyeglasses', minimum=0, maximum=1, step=0.01),
|
| 155 |
-
gr.Slider(label='Pale Skin', minimum=0, maximum=1, step=0.01),
|
| 156 |
-
gr.Slider(label='Smiling', minimum=0, maximum=1, step=0.01),
|
| 157 |
-
gr.Slider(label='Wearing Hat', minimum=0, maximum=1, step=0.01),
|
| 158 |
]
|
| 159 |
|
| 160 |
-
seed_input = gr.Number(label="Seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
generate_button = gr.Button("Generate")
|
| 162 |
|
| 163 |
output_image = gr.Image(label="Generated Image")
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# Set the action for the button
|
| 166 |
-
generate_button.click(fn=generate, inputs=[seed_input] +
|
| 167 |
|
| 168 |
# Launch the demo
|
| 169 |
demo.launch()
|
|
|
|
| 3 |
import pickle
|
| 4 |
from torchvision.utils import save_image
|
| 5 |
import numpy as np
|
| 6 |
+
with open('./augceleba_8064.pkl', 'rb') as f:
|
|
|
|
| 7 |
G = pickle.load(f)['G_ema'].cpu().float() # torch.nn.Module
|
| 8 |
|
| 9 |
|
|
|
|
| 43 |
import requests
|
| 44 |
from PIL import Image
|
| 45 |
from io import BytesIO
|
|
|
|
| 46 |
import torch
|
| 47 |
|
| 48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
| 50 |
|
| 51 |
# load model and scheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# let's download an image
|
| 53 |
|
| 54 |
|
| 55 |
+
def super_res(low_res_img, num_steps):
|
| 56 |
# run pipeline in inference (sample random noise and denoise)
|
| 57 |
+
upscaled_image = pipeline(low_res_img, num_inference_steps=num_steps, eta=1).images[0]
|
| 58 |
+
#upscaled_image = text_pipeline(prompt="a sharp image of human face", image=low_res_img, num_inference_steps=75).images[0]
|
| 59 |
return upscaled_image
|
| 60 |
|
| 61 |
|
|
|
|
| 74 |
elif i == 4:
|
| 75 |
checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
|
| 76 |
elif i == 5:
|
| 77 |
+
checkboxes_vector[cchoices.index('Young')] = checkboxes[i] * 2
|
| 78 |
elif i == 6:
|
| 79 |
checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
|
| 80 |
elif i == 9:
|
|
|
|
| 82 |
elif i == 10:
|
| 83 |
checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
|
| 84 |
elif i == 11:
|
| 85 |
+
checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i] * 2
|
| 86 |
elif i == 12:
|
| 87 |
checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
|
| 88 |
elif i == 13:
|
| 89 |
checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
|
| 90 |
elif i == 14:
|
| 91 |
+
checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] * 2
|
| 92 |
|
| 93 |
|
| 94 |
is_young = checkboxes[5]
|
|
|
|
| 97 |
is_goatee = checkboxes[7]
|
| 98 |
is_mustache = checkboxes[8]
|
| 99 |
|
| 100 |
+
checkboxes_vector[12] = is_mustache * 2
|
| 101 |
+
checkboxes_vector[13] = is_mustache * 2
|
| 102 |
+
checkboxes_vector[14] = is_goatee *2
|
| 103 |
+
checkboxes_vector[15] = is_goatee*2
|
| 104 |
|
| 105 |
checkboxes_vector[16] = is_bald
|
| 106 |
checkboxes_vector[17] = is_bald
|
|
|
|
| 114 |
m = checkboxes_vector.view(1, 20)
|
| 115 |
ws = G.mapping(z, m, truncation_psi=0.5)
|
| 116 |
img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
|
| 117 |
+
if False:
|
| 118 |
+
up_img = np.array(super_res(img*2-1, upscale_steps))
|
| 119 |
+
return up_img
|
| 120 |
+
else:
|
| 121 |
+
return img[0].permute(1, 2, 0).numpy()
|
| 122 |
|
| 123 |
|
| 124 |
# Create the interface using gr.Blocks
|
| 125 |
with gr.Blocks() as demo:
|
| 126 |
with gr.Row():
|
| 127 |
+
slider1 = gr.Slider(label='Not Bald <--------------> Bald', minimum=0, maximum=1, step=0.01)
|
| 128 |
+
slider2 = gr.Slider(label='No Black Hair <--------> Black Hair', minimum=0, maximum=1, step=0.01)
|
| 129 |
+
slider3 = gr.Slider(label='No Blond Hair <--------> Blond Hair', minimum=0, maximum=1, step=0.01)
|
| 130 |
+
slider4 = gr.Slider(label='No Straight Hair <-----> Straight Hair', minimum=0, maximum=1, step=0.01)
|
| 131 |
+
slider5 = gr.Slider(label='No Wavy Hair <-------> Wavy Hair', minimum=0, maximum=1, step=0.01)
|
| 132 |
+
sliders = [ slider1, slider2, slider3, slider4, slider5]
|
|
|
|
| 133 |
|
| 134 |
with gr.Row():
|
| 135 |
+
sliders += [gr.Slider(label='Old <--------------> Young', minimum=0, maximum=1, step=0.01)]
|
| 136 |
+
sliders += [gr.Slider(label='Female <--------------> Male', minimum=0, maximum=1, step=0.01)]
|
| 137 |
|
| 138 |
with gr.Row():
|
| 139 |
+
sliders += [gr.Slider(label='No Goatee <--------------> Goatee', minimum=0, maximum=1, step=0.01)]
|
| 140 |
+
sliders += [gr.Slider(label='No Mustache <--------------> Mustache', minimum=0, maximum=1, step=0.01)]
|
| 141 |
|
| 142 |
with gr.Row():
|
| 143 |
sliders += [
|
| 144 |
+
gr.Slider(label='Small Nose <-------> Big Nose', minimum=0, maximum=1, step=0.01),
|
| 145 |
+
gr.Slider(label='Slim <--------> Chubby', minimum=0, maximum=1, step=0.01),
|
| 146 |
+
gr.Slider(label='No Eyeglasses <--------> Eyeglasses', minimum=0, maximum=1, step=0.01),
|
| 147 |
+
gr.Slider(label='Tan Skin <-------> Pale Skin', minimum=0, maximum=1, step=0.01),
|
| 148 |
+
gr.Slider(label='Not Smiling <---------> Smiling', minimum=0, maximum=1, step=0.01),
|
| 149 |
+
gr.Slider(label='No Hat <---------> Wearing Hat', minimum=0, maximum=1, step=0.01),
|
| 150 |
]
|
| 151 |
|
| 152 |
+
seed_input = gr.Number(label="Seed", value=6)
|
| 153 |
+
upscale_funcs = []
|
| 154 |
+
#with gr.Row():
|
| 155 |
+
# upscale_funcs = [gr.Checkbox(label="Upscale 4x")]
|
| 156 |
+
# upscale_funcs += [gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=10)]
|
| 157 |
generate_button = gr.Button("Generate")
|
| 158 |
|
| 159 |
output_image = gr.Image(label="Generated Image")
|
| 160 |
+
for slider in sliders:
|
| 161 |
+
slider.change(fn=generate, inputs=[seed_input] + sliders, outputs=output_image)
|
| 162 |
|
| 163 |
# Set the action for the button
|
| 164 |
+
generate_button.click(fn=generate, inputs=[seed_input] +sliders, outputs=output_image)
|
| 165 |
|
| 166 |
# Launch the demo
|
| 167 |
demo.launch()
|