import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load model and tokenizer model_id = "Qwen/Qwen3-0.6B" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) # Create pipeline generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Chat function def chat(prompt): output = generator(prompt, max_new_tokens=100, do_sample=True, temperature=0.7) return output[0]["generated_text"] # Gradio UI gr.Interface( fn=chat, inputs=gr.Textbox(lines=3, placeholder="Enter your prompt here..."), outputs="text", title="Qwen3-0.6B Chatbot", description="A simple demo using Qwen3-0.6B from Hugging Face" ).launch()