Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from huggingface_hub import InferenceApi | |
| from PIL import Image | |
| from io import BytesIO | |
| # Load environment variables from the .env file | |
| load_dotenv() | |
| # Hugging Face API token | |
| HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") | |
| # Initialize the Hugging Face Inference API | |
| inference = InferenceApi(repo_id="stabilityai/stable-diffusion-3.5-large", token=HUGGINGFACE_API_TOKEN) | |
| # Streamlit App UI | |
| st.set_page_config(page_title="Stable Diffusion Demo", page_icon="🖼️") | |
| st.title("Stable Diffusion 3.5 - Text-to-Image") | |
| # Text input for the prompt | |
| prompt = st.text_input("Enter a prompt for the image:") | |
| # Button to generate the image | |
| if st.button("Generate Image"): | |
| if prompt: | |
| try: | |
| # Make request to the Hugging Face model | |
| output = inference(inputs=prompt) | |
| # Convert the output to an image | |
| image = Image.open(BytesIO(output)) | |
| st.image(image, caption="Generated Image", use_column_width=True) | |
| except Exception as e: | |
| st.error(f"Error: {str(e)}") | |
| else: | |
| st.warning("Please enter a prompt.") | |