Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import streamlit as st | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| import os | |
| def load_pipeline(): | |
| # Get the token from the environment variable | |
| token = os.environ.get("HUGGING_FACE_HUB_TOKEN") | |
| if not token: | |
| st.error("Hugging Face token not found. Please check your Hugging Face Spaces secrets.") | |
| st.stop() | |
| pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", use_auth_token=token) | |
| pipeline.load_lora_weights("gorkemyurt/lora-train") | |
| return pipeline | |
| st.title("FLUX.1 Diffusion Model with LoRA") | |
| pipeline = load_pipeline() | |
| prompt = st.text_input("Enter your prompt:", "A beautiful landscape with mountains and a lake") | |
| num_inference_steps = st.slider("Number of inference steps:", min_value=1, max_value=100, value=50) | |
| guidance_scale = st.slider("Guidance scale:", min_value=1.0, max_value=20.0, value=7.5, step=0.1) | |
| if st.button("Generate Image"): | |
| with st.spinner("Generating image..."): | |
| image = pipeline( | |
| prompt=prompt, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale | |
| ).images[0] | |
| st.image(image, caption="Generated Image", use_column_width=True) |