Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	v4
Browse files- app.py +128 -39
 - requirements.txt +4 -3
 
    	
        app.py
    CHANGED
    
    | 
         @@ -1,54 +1,143 @@ 
     | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 2 | 
         
            -
            from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
         
     | 
| 3 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 4 | 
         
             
            import tempfile
         
     | 
| 
         | 
|
| 
         | 
|
| 5 | 
         | 
| 6 | 
         
            -
            # Initialize  
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
                torch_dtype=torch.float16,
         
     | 
| 10 | 
         
            -
                device_map="auto"
         
     | 
| 11 | 
         
            -
            )
         
     | 
| 12 | 
         
            -
            tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Omni-7B")
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            def analyze_media(video_path, prompt, request: gr.Request):
         
     | 
| 15 | 
         
            -
                # ZeroGPU rate limiting headers
         
     | 
| 16 | 
         
            -
                headers = {"X-IP-Token": request.headers.get('x-ip-token', '')}
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
                # Create multimodal pipeline
         
     | 
| 19 | 
         
            -
                pipe = pipeline(
         
     | 
| 20 | 
         
            -
                    "multimodal-generation",
         
     | 
| 21 | 
         
            -
                    model=model,
         
     | 
| 22 | 
         
            -
                    tokenizer=tokenizer,
         
     | 
| 23 | 
         
            -
                    device=model.device,
         
     | 
| 24 | 
         
            -
                    max_new_tokens=1024,
         
     | 
| 25 | 
         
            -
                    generate_speech=True
         
     | 
| 26 | 
         
            -
                )
         
     | 
| 27 | 
         | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
                 
     | 
| 30 | 
         
            -
                     
     | 
| 31 | 
         
            -
                     
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 34 | 
         
             
                )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 35 | 
         | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                    result["speech"].export(f.name, format="wav")
         
     | 
| 39 | 
         
            -
                    return result["text"], f.name
         
     | 
| 40 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 41 | 
         
             
            with gr.Blocks() as demo:
         
     | 
| 42 | 
         
             
                gr.Markdown("## Qwen2.5-Omni-7B Multimodal Demo")
         
     | 
| 43 | 
         | 
| 44 | 
         
             
                with gr.Row():
         
     | 
| 45 | 
         
            -
                     
     | 
| 46 | 
         
            -
                        label="Upload Video (max 120s)",
         
     | 
| 47 | 
         
            -
                        sources=["upload"],
         
     | 
| 48 | 
         
            -
                        max_length=120
         
     | 
| 49 | 
         
            -
                    )
         
     | 
| 50 | 
         
             
                    prompt_input = gr.Textbox(label="Analysis Prompt", placeholder="Describe or ask about the video...")
         
     | 
| 51 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 52 | 
         
             
                submit_btn = gr.Button("Analyze", variant="primary")
         
     | 
| 53 | 
         | 
| 54 | 
         
             
                with gr.Column():
         
     | 
| 
         @@ -56,8 +145,8 @@ with gr.Blocks() as demo: 
     | 
|
| 56 | 
         
             
                    audio_output = gr.Audio(label="Speech Response", autoplay=True)
         
     | 
| 57 | 
         | 
| 58 | 
         
             
                submit_btn.click(
         
     | 
| 59 | 
         
            -
                     
     | 
| 60 | 
         
            -
                    inputs=[ 
     | 
| 61 | 
         
             
                    outputs=[text_output, audio_output]
         
     | 
| 62 | 
         
             
                )
         
     | 
| 63 | 
         | 
| 
         | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 
         | 
|
| 2 | 
         
             
            import torch
         
     | 
| 3 | 
         
            +
            from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor, TextStreamer
         
     | 
| 4 | 
         
            +
            from qwen_omni_utils import process_mm_info
         
     | 
| 5 | 
         
            +
            import soundfile as sf
         
     | 
| 6 | 
         
             
            import tempfile
         
     | 
| 7 | 
         
            +
            import spaces
         
     | 
| 8 | 
         
            +
            import gc
         
     | 
| 9 | 
         | 
| 10 | 
         
            +
            # Initialize the model and processor
         
     | 
| 11 | 
         
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 12 | 
         
            +
            torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 13 | 
         | 
| 14 | 
         
            +
            def get_model():
         
     | 
| 15 | 
         
            +
                if torch.cuda.is_available():
         
     | 
| 16 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 17 | 
         
            +
                    gc.collect()
         
     | 
| 18 | 
         
            +
                model = Qwen2_5OmniModel.from_pretrained(
         
     | 
| 19 | 
         
            +
                    "Qwen/Qwen2.5-Omni-7B",
         
     | 
| 20 | 
         
            +
                    torch_dtype=torch_dtype,
         
     | 
| 21 | 
         
            +
                    device_map="auto",
         
     | 
| 22 | 
         
            +
                    enable_audio_output=True,
         
     | 
| 23 | 
         
            +
                    low_cpu_mem_usage=True,
         
     | 
| 24 | 
         
            +
                    attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
         
     | 
| 25 | 
         
             
                )
         
     | 
| 26 | 
         
            +
                return model
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            model = get_model()
         
     | 
| 29 | 
         
            +
            processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            # System prompt
         
     | 
| 32 | 
         
            +
            SYSTEM_PROMPT = {
         
     | 
| 33 | 
         
            +
                "role": "system",
         
     | 
| 34 | 
         
            +
                "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
         
     | 
| 35 | 
         
            +
            }
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            # Voice options
         
     | 
| 38 | 
         
            +
            VOICE_OPTIONS = {
         
     | 
| 39 | 
         
            +
                "Chelsie (Female)": "Chelsie",
         
     | 
| 40 | 
         
            +
                "Ethan (Male)": "Ethan"
         
     | 
| 41 | 
         
            +
            }
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            @spaces.GPU(duration=120)
         
     | 
| 44 | 
         
            +
            def process_input(video, text, voice_type, enable_audio_output):
         
     | 
| 45 | 
         
            +
                try:
         
     | 
| 46 | 
         
            +
                    # Clear GPU memory before processing
         
     | 
| 47 | 
         
            +
                    if torch.cuda.is_available():
         
     | 
| 48 | 
         
            +
                        torch.cuda.empty_cache()
         
     | 
| 49 | 
         
            +
                        gc.collect()
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    # Prepare multimodal input
         
     | 
| 52 | 
         
            +
                    user_input = {
         
     | 
| 53 | 
         
            +
                        "text": text,
         
     | 
| 54 | 
         
            +
                        "video": video if video is not None else None,
         
     | 
| 55 | 
         
            +
                    }
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    # Prepare conversation history for model processing
         
     | 
| 58 | 
         
            +
                    conversation = [SYSTEM_PROMPT]
         
     | 
| 59 | 
         
            +
                    conversation.append({"role": "user", "content": user_input})
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    # Process multimedia information
         
     | 
| 62 | 
         
            +
                    try:
         
     | 
| 63 | 
         
            +
                        audios, images, videos = process_mm_info(conversation, use_audio_in_video=False)
         
     | 
| 64 | 
         
            +
                    except Exception as e:
         
     | 
| 65 | 
         
            +
                        print(f"Error processing multimedia: {str(e)}")
         
     | 
| 66 | 
         
            +
                        audios, images, videos = [], [], []
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    inputs = processor(
         
     | 
| 69 | 
         
            +
                        text=processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False),
         
     | 
| 70 | 
         
            +
                        videos=videos,
         
     | 
| 71 | 
         
            +
                        return_tensors="pt",
         
     | 
| 72 | 
         
            +
                        padding=True
         
     | 
| 73 | 
         
            +
                    )
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    # Move inputs to device and convert dtype
         
     | 
| 76 | 
         
            +
                    inputs = {k: v.to(device=model.device, dtype=model.dtype) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    # Generate response with streaming and audio output
         
     | 
| 79 | 
         
            +
                    text_ids = None
         
     | 
| 80 | 
         
            +
                    audio_path = None
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    if enable_audio_output:
         
     | 
| 83 | 
         
            +
                        voice_type_value = VOICE_OPTIONS.get(voice_type, "Chelsie")
         
     | 
| 84 | 
         
            +
                        try:
         
     | 
| 85 | 
         
            +
                            generation_output = model.generate(
         
     | 
| 86 | 
         
            +
                                **inputs,
         
     | 
| 87 | 
         
            +
                                use_audio_in_video=False,
         
     | 
| 88 | 
         
            +
                                return_audio=True,
         
     | 
| 89 | 
         
            +
                                spk=voice_type_value,
         
     | 
| 90 | 
         
            +
                                max_new_tokens=512,
         
     | 
| 91 | 
         
            +
                                do_sample=True,
         
     | 
| 92 | 
         
            +
                                temperature=0.7,
         
     | 
| 93 | 
         
            +
                                top_p=0.9,
         
     | 
| 94 | 
         
            +
                                streamer=TextStreamer(processor, skip_prompt=True)
         
     | 
| 95 | 
         
            +
                            )
         
     | 
| 96 | 
         
            +
                            if isinstance(generation_output, tuple) and len(generation_output) == 2:
         
     | 
| 97 | 
         
            +
                                text_ids, audio = generation_output
         
     | 
| 98 | 
         
            +
                                if audio is not None:
         
     | 
| 99 | 
         
            +
                                    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
         
     | 
| 100 | 
         
            +
                                        sf.write(tmp_file.name, audio.reshape(-1).detach().cpu().numpy(), samplerate=24000)
         
     | 
| 101 | 
         
            +
                                        audio_path = tmp_file.name
         
     | 
| 102 | 
         
            +
                        except Exception as e:
         
     | 
| 103 | 
         
            +
                            print(f"Error during audio generation: {str(e)}")
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    # Fall back to text-only generation if audio fails
         
     | 
| 106 | 
         
            +
                    if text_ids is None:
         
     | 
| 107 | 
         
            +
                        try:
         
     | 
| 108 | 
         
            +
                            text_ids = model.generate(
         
     | 
| 109 | 
         
            +
                                **inputs,
         
     | 
| 110 | 
         
            +
                                use_audio_in_video=False,
         
     | 
| 111 | 
         
            +
                                return_audio=False,
         
     | 
| 112 | 
         
            +
                                max_new_tokens=512,
         
     | 
| 113 | 
         
            +
                                do_sample=True,
         
     | 
| 114 | 
         
            +
                                temperature=0.7,
         
     | 
| 115 | 
         
            +
                                top_p=0.9,
         
     | 
| 116 | 
         
            +
                                streamer=TextStreamer(processor, skip_prompt=True)
         
     | 
| 117 | 
         
            +
                            )
         
     | 
| 118 | 
         
            +
                        except Exception as e:
         
     | 
| 119 | 
         
            +
                            print(f"Error during fallback text generation: {str(e)}")
         
     | 
| 120 | 
         | 
| 121 | 
         
            +
                    # Decode text response
         
     | 
| 122 | 
         
            +
                    text_response = processor.batch_decode(text_ids, skip_special_tokens=True)[0] if text_ids is not None else "Error generating response."
         
     | 
| 
         | 
|
| 
         | 
|
| 123 | 
         | 
| 124 | 
         
            +
                    return text_response.strip(), audio_path
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                except Exception as e:
         
     | 
| 127 | 
         
            +
                    print(f"Error in process_input: {str(e)}")
         
     | 
| 128 | 
         
            +
                    return "Error processing input.", None
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            # Gradio interface setup
         
     | 
| 131 | 
         
             
            with gr.Blocks() as demo:
         
     | 
| 132 | 
         
             
                gr.Markdown("## Qwen2.5-Omni-7B Multimodal Demo")
         
     | 
| 133 | 
         | 
| 134 | 
         
             
                with gr.Row():
         
     | 
| 135 | 
         
            +
                    video_input = gr.Video(label="Upload Video (max 120s)", sources=["upload"], max_length=120)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 136 | 
         
             
                    prompt_input = gr.Textbox(label="Analysis Prompt", placeholder="Describe or ask about the video...")
         
     | 
| 137 | 
         | 
| 138 | 
         
            +
                voice_selection = gr.Dropdown(label="Voice Type", choices=list(VOICE_OPTIONS.keys()), value="Chelsie (Female)")
         
     | 
| 139 | 
         
            +
                enable_audio_checkbox = gr.Checkbox(label="Enable Audio Output", value=True)
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
             
                submit_btn = gr.Button("Analyze", variant="primary")
         
     | 
| 142 | 
         | 
| 143 | 
         
             
                with gr.Column():
         
     | 
| 
         | 
|
| 145 | 
         
             
                    audio_output = gr.Audio(label="Speech Response", autoplay=True)
         
     | 
| 146 | 
         | 
| 147 | 
         
             
                submit_btn.click(
         
     | 
| 148 | 
         
            +
                    process_input,
         
     | 
| 149 | 
         
            +
                    inputs=[video_input, prompt_input, voice_selection, enable_audio_checkbox],
         
     | 
| 150 | 
         
             
                    outputs=[text_output, audio_output]
         
     | 
| 151 | 
         
             
                )
         
     | 
| 152 | 
         | 
    	
        requirements.txt
    CHANGED
    
    | 
         @@ -1,4 +1,5 @@ 
     | 
|
| 1 | 
         
             
            torch>=2.3.0
         
     | 
| 2 | 
         
            -
            transformers 
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 
         | 
| 
         | 
|
| 1 | 
         
             
            torch>=2.3.0
         
     | 
| 2 | 
         
            +
            git+https://github.com/huggingface/transformers@f742a644ca32e65758c3adb36225aef1731bd2a8
         
     | 
| 3 | 
         
            +
            accelerate>=0.30.0
         
     | 
| 4 | 
         
            +
            qwen-omni-utils[decord]>=1.0.0  # For multimedia processing
         
     | 
| 5 | 
         
            +
            soundfile>=0.12.1  # Audio support
         
     |