Spaces:
Running
on
Zero
Running
on
Zero
reset
Browse files
app.py
CHANGED
|
@@ -38,34 +38,34 @@ torch.backends.cudnn.benchmark = False
|
|
| 38 |
|
| 39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 40 |
|
| 41 |
-
# Load pipeline function remains unchanged
|
| 42 |
|
| 43 |
-
def
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
return [gr.update()] * 12
|
| 68 |
|
|
|
|
|
|
|
| 69 |
def generate(
|
| 70 |
prompt: str,
|
| 71 |
negative_prompt: str = "",
|
|
@@ -81,65 +81,283 @@ def generate(
|
|
| 81 |
upscale_by: float = 1.5,
|
| 82 |
progress=gr.Progress(track_tqdm=True),
|
| 83 |
) -> Image:
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
-
clear_button.click(
|
| 119 |
-
fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0),
|
| 120 |
-
gr.update(value=1024), gr.update(value=1024),
|
| 121 |
-
gr.update(value=7.0), gr.update(value=30),
|
| 122 |
-
gr.update(value="DPM++ 2M SDE Karras"),
|
| 123 |
-
gr.update(value="1024 x 1024"), gr.update(value=False),
|
| 124 |
-
gr.update(value=0.55), gr.update(value=1.5)),
|
| 125 |
-
inputs=[],
|
| 126 |
-
outputs=[prompt, negative_prompt, seed, custom_width, custom_height,
|
| 127 |
-
guidance_scale, num_inference_steps, sampler,
|
| 128 |
-
aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by]
|
| 129 |
-
)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
|
| 38 |
|
| 39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
+
def load_pipeline(model_name):
|
| 43 |
+
vae = AutoencoderKL.from_pretrained(
|
| 44 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 45 |
+
torch_dtype=torch.float16,
|
| 46 |
+
)
|
| 47 |
+
pipeline = (
|
| 48 |
+
StableDiffusionXLPipeline.from_single_file
|
| 49 |
+
if MODEL.endswith(".safetensors")
|
| 50 |
+
else StableDiffusionXLPipeline.from_pretrained
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
pipe = pipeline(
|
| 54 |
+
model_name,
|
| 55 |
+
vae=vae,
|
| 56 |
+
torch_dtype=torch.float16,
|
| 57 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
| 58 |
+
use_safetensors=True,
|
| 59 |
+
add_watermarker=False,
|
| 60 |
+
use_auth_token=HF_TOKEN,
|
| 61 |
+
variant="fp16",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
pipe.to(device)
|
| 65 |
+
return pipe
|
|
|
|
| 66 |
|
| 67 |
+
|
| 68 |
+
@spaces.GPU
|
| 69 |
def generate(
|
| 70 |
prompt: str,
|
| 71 |
negative_prompt: str = "",
|
|
|
|
| 81 |
upscale_by: float = 1.5,
|
| 82 |
progress=gr.Progress(track_tqdm=True),
|
| 83 |
) -> Image:
|
| 84 |
+
generator = utils.seed_everything(seed)
|
| 85 |
|
| 86 |
+
width, height = utils.aspect_ratio_handler(
|
| 87 |
+
aspect_ratio_selector,
|
| 88 |
+
custom_width,
|
| 89 |
+
custom_height,
|
| 90 |
+
)
|
| 91 |
|
| 92 |
+
width, height = utils.preprocess_image_dimensions(width, height)
|
| 93 |
|
| 94 |
+
backup_scheduler = pipe.scheduler
|
| 95 |
+
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
| 96 |
|
| 97 |
+
if use_upscaler:
|
| 98 |
+
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 99 |
+
metadata = {
|
| 100 |
+
"prompt": prompt,
|
| 101 |
+
"negative_prompt": negative_prompt,
|
| 102 |
+
"resolution": f"{width} x {height}",
|
| 103 |
+
"guidance_scale": guidance_scale,
|
| 104 |
+
"num_inference_steps": num_inference_steps,
|
| 105 |
+
"seed": seed,
|
| 106 |
+
"sampler": sampler,
|
| 107 |
+
}
|
| 108 |
|
| 109 |
+
if use_upscaler:
|
| 110 |
+
new_width = int(width * upscale_by)
|
| 111 |
+
new_height = int(height * upscale_by)
|
| 112 |
+
metadata["use_upscaler"] = {
|
| 113 |
+
"upscale_method": "nearest-exact",
|
| 114 |
+
"upscaler_strength": upscaler_strength,
|
| 115 |
+
"upscale_by": upscale_by,
|
| 116 |
+
"new_resolution": f"{new_width} x {new_height}",
|
| 117 |
+
}
|
| 118 |
+
else:
|
| 119 |
+
metadata["use_upscaler"] = None
|
| 120 |
+
logger.info(json.dumps(metadata, indent=4))
|
| 121 |
|
| 122 |
+
try:
|
| 123 |
+
if use_upscaler:
|
| 124 |
+
latents = pipe(
|
| 125 |
+
prompt=prompt,
|
| 126 |
+
negative_prompt=negative_prompt,
|
| 127 |
+
width=width,
|
| 128 |
+
height=height,
|
| 129 |
+
guidance_scale=guidance_scale,
|
| 130 |
+
num_inference_steps=num_inference_steps,
|
| 131 |
+
generator=generator,
|
| 132 |
+
output_type="latent",
|
| 133 |
+
).images
|
| 134 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 135 |
+
images = upscaler_pipe(
|
| 136 |
+
prompt=prompt,
|
| 137 |
+
negative_prompt=negative_prompt,
|
| 138 |
+
image=upscaled_latents,
|
| 139 |
+
guidance_scale=guidance_scale,
|
| 140 |
+
num_inference_steps=num_inference_steps,
|
| 141 |
+
strength=upscaler_strength,
|
| 142 |
+
generator=generator,
|
| 143 |
+
output_type="pil",
|
| 144 |
+
).images
|
| 145 |
+
else:
|
| 146 |
+
images = pipe(
|
| 147 |
+
prompt=prompt,
|
| 148 |
+
negative_prompt=negative_prompt,
|
| 149 |
+
width=width,
|
| 150 |
+
height=height,
|
| 151 |
+
guidance_scale=guidance_scale,
|
| 152 |
+
num_inference_steps=num_inference_steps,
|
| 153 |
+
generator=generator,
|
| 154 |
+
output_type="pil",
|
| 155 |
+
).images
|
| 156 |
|
| 157 |
+
if images and IS_COLAB:
|
| 158 |
+
for image in images:
|
| 159 |
+
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 160 |
+
logger.info(f"Image saved as {filepath} with metadata")
|
| 161 |
|
| 162 |
+
return images, metadata
|
| 163 |
+
except Exception as e:
|
| 164 |
+
logger.exception(f"An error occurred: {e}")
|
| 165 |
+
raise
|
| 166 |
+
finally:
|
| 167 |
+
if use_upscaler:
|
| 168 |
+
del upscaler_pipe
|
| 169 |
+
pipe.scheduler = backup_scheduler
|
| 170 |
+
utils.free_memory()
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
+
if torch.cuda.is_available():
|
| 174 |
+
pipe = load_pipeline(MODEL)
|
| 175 |
+
logger.info("Loaded on Device!")
|
| 176 |
+
else:
|
| 177 |
+
pipe = None
|
| 178 |
+
|
| 179 |
+
with gr.Blocks(css="style.css") as demo:
|
| 180 |
+
title = gr.HTML(
|
| 181 |
+
f"""<h1><span>{DESCRIPTION}</span></h1>""",
|
| 182 |
+
elem_id="title",
|
| 183 |
+
)
|
| 184 |
+
gr.Markdown(
|
| 185 |
+
f"""Gradio demo for [Pony Diffusion V6](https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
|
| 186 |
+
elem_id="subtitle",
|
| 187 |
+
)
|
| 188 |
+
gr.DuplicateButton(
|
| 189 |
+
value="Duplicate Space for private use",
|
| 190 |
+
elem_id="duplicate-button",
|
| 191 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 192 |
)
|
| 193 |
+
with gr.Group():
|
| 194 |
+
with gr.Row():
|
| 195 |
+
prompt = gr.Text(
|
| 196 |
+
label="Prompt",
|
| 197 |
+
show_label=False,
|
| 198 |
+
max_lines=5,
|
| 199 |
+
placeholder="Enter your prompt",
|
| 200 |
+
container=False,
|
| 201 |
+
)
|
| 202 |
+
run_button = gr.Button(
|
| 203 |
+
"Generate",
|
| 204 |
+
variant="primary",
|
| 205 |
+
scale=0
|
| 206 |
+
)
|
| 207 |
+
result = gr.Gallery(
|
| 208 |
+
label="Result",
|
| 209 |
+
columns=1,
|
| 210 |
+
preview=True,
|
| 211 |
+
show_label=False
|
| 212 |
+
)
|
| 213 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
| 214 |
+
negative_prompt = gr.Text(
|
| 215 |
+
label="Negative Prompt",
|
| 216 |
+
max_lines=5,
|
| 217 |
+
placeholder="Enter a negative prompt",
|
| 218 |
+
value=""
|
| 219 |
+
)
|
| 220 |
+
aspect_ratio_selector = gr.Radio(
|
| 221 |
+
label="Aspect Ratio",
|
| 222 |
+
choices=config.aspect_ratios,
|
| 223 |
+
value="1024 x 1024",
|
| 224 |
+
container=True,
|
| 225 |
+
)
|
| 226 |
+
with gr.Group(visible=False) as custom_resolution:
|
| 227 |
+
with gr.Row():
|
| 228 |
+
custom_width = gr.Slider(
|
| 229 |
+
label="Width",
|
| 230 |
+
minimum=MIN_IMAGE_SIZE,
|
| 231 |
+
maximum=MAX_IMAGE_SIZE,
|
| 232 |
+
step=8,
|
| 233 |
+
value=1024,
|
| 234 |
+
)
|
| 235 |
+
custom_height = gr.Slider(
|
| 236 |
+
label="Height",
|
| 237 |
+
minimum=MIN_IMAGE_SIZE,
|
| 238 |
+
maximum=MAX_IMAGE_SIZE,
|
| 239 |
+
step=8,
|
| 240 |
+
value=1024,
|
| 241 |
+
)
|
| 242 |
+
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
|
| 243 |
+
with gr.Row() as upscaler_row:
|
| 244 |
+
upscaler_strength = gr.Slider(
|
| 245 |
+
label="Strength",
|
| 246 |
+
minimum=0,
|
| 247 |
+
maximum=1,
|
| 248 |
+
step=0.05,
|
| 249 |
+
value=0.55,
|
| 250 |
+
visible=False,
|
| 251 |
+
)
|
| 252 |
+
upscale_by = gr.Slider(
|
| 253 |
+
label="Upscale by",
|
| 254 |
+
minimum=1,
|
| 255 |
+
maximum=1.5,
|
| 256 |
+
step=0.1,
|
| 257 |
+
value=1.5,
|
| 258 |
+
visible=False,
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
sampler = gr.Dropdown(
|
| 262 |
+
label="Sampler",
|
| 263 |
+
choices=config.sampler_list,
|
| 264 |
+
interactive=True,
|
| 265 |
+
value="DPM++ 2M SDE Karras",
|
| 266 |
+
)
|
| 267 |
+
with gr.Row():
|
| 268 |
+
seed = gr.Slider(
|
| 269 |
+
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
|
| 270 |
+
)
|
| 271 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 272 |
+
with gr.Group():
|
| 273 |
+
with gr.Row():
|
| 274 |
+
guidance_scale = gr.Slider(
|
| 275 |
+
label="Guidance scale",
|
| 276 |
+
minimum=1,
|
| 277 |
+
maximum=12,
|
| 278 |
+
step=0.1,
|
| 279 |
+
value=7.0,
|
| 280 |
+
)
|
| 281 |
+
num_inference_steps = gr.Slider(
|
| 282 |
+
label="Number of inference steps",
|
| 283 |
+
minimum=1,
|
| 284 |
+
maximum=50,
|
| 285 |
+
step=1,
|
| 286 |
+
value=28,
|
| 287 |
+
)
|
| 288 |
+
with gr.Accordion(label="Generation Parameters", open=False):
|
| 289 |
+
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
| 290 |
+
gr.Examples(
|
| 291 |
+
examples=config.examples,
|
| 292 |
+
inputs=prompt,
|
| 293 |
+
outputs=[result, gr_metadata],
|
| 294 |
+
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
|
| 295 |
+
cache_examples=CACHE_EXAMPLES,
|
| 296 |
+
)
|
| 297 |
+
use_upscaler.change(
|
| 298 |
+
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
|
| 299 |
+
inputs=use_upscaler,
|
| 300 |
+
outputs=[upscaler_strength, upscale_by],
|
| 301 |
+
queue=False,
|
| 302 |
+
api_name=False,
|
| 303 |
+
)
|
| 304 |
+
aspect_ratio_selector.change(
|
| 305 |
+
fn=lambda x: gr.update(visible=x == "Custom"),
|
| 306 |
+
inputs=aspect_ratio_selector,
|
| 307 |
+
outputs=custom_resolution,
|
| 308 |
+
queue=False,
|
| 309 |
+
api_name=False,
|
| 310 |
)
|
| 311 |
|
| 312 |
+
inputs = [
|
| 313 |
+
prompt,
|
| 314 |
+
negative_prompt,
|
| 315 |
+
seed,
|
| 316 |
+
custom_width,
|
| 317 |
+
custom_height,
|
| 318 |
+
guidance_scale,
|
| 319 |
+
num_inference_steps,
|
| 320 |
+
sampler,
|
| 321 |
+
aspect_ratio_selector,
|
| 322 |
+
use_upscaler,
|
| 323 |
+
upscaler_strength,
|
| 324 |
+
upscale_by,
|
| 325 |
+
]
|
| 326 |
|
| 327 |
+
prompt.submit(
|
| 328 |
+
fn=utils.randomize_seed_fn,
|
| 329 |
+
inputs=[seed, randomize_seed],
|
| 330 |
+
outputs=seed,
|
| 331 |
+
queue=False,
|
| 332 |
+
api_name=False,
|
| 333 |
+
).then(
|
| 334 |
+
fn=generate,
|
| 335 |
+
inputs=inputs,
|
| 336 |
+
outputs=result,
|
| 337 |
+
api_name="run",
|
| 338 |
+
)
|
| 339 |
+
negative_prompt.submit(
|
| 340 |
+
fn=utils.randomize_seed_fn,
|
| 341 |
+
inputs=[seed, randomize_seed],
|
| 342 |
+
outputs=seed,
|
| 343 |
+
queue=False,
|
| 344 |
+
api_name=False,
|
| 345 |
+
).then(
|
| 346 |
+
fn=generate,
|
| 347 |
+
inputs=inputs,
|
| 348 |
+
outputs=result,
|
| 349 |
+
api_name=False,
|
| 350 |
+
)
|
| 351 |
+
run_button.click(
|
| 352 |
+
fn=utils.randomize_seed_fn,
|
| 353 |
+
inputs=[seed, randomize_seed],
|
| 354 |
+
outputs=seed,
|
| 355 |
+
queue=False,
|
| 356 |
+
api_name=False,
|
| 357 |
+
).then(
|
| 358 |
+
fn=generate,
|
| 359 |
+
inputs=inputs,
|
| 360 |
+
outputs=[result, gr_metadata],
|
| 361 |
+
api_name=False,
|
| 362 |
+
)
|
| 363 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|