Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,6 +27,7 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
|
| 27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 28 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 29 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
|
|
|
| 30 |
|
| 31 |
MODEL = os.getenv(
|
| 32 |
"MODEL",
|
|
@@ -37,7 +38,7 @@ DESCRIPTION = '''
|
|
| 37 |
<div>
|
| 38 |
<h1 style="text-align: center;">High Definition Pony Diffusion</h1>
|
| 39 |
<p>Gradio demo for PonyDiffusion v6 with image gallery, json prompt support, advanced options and more.</p>
|
| 40 |
-
<p>❤️ Thanks for ✨
|
| 41 |
<p>🔎 For more details about me, take a look at <a href="https://sergidev.me">My website</a>.</p>
|
| 42 |
<p>🌚 For dark mode compatibility, click <a href="https://sergidev.me/hdiffusion">here</a>.</p>
|
| 43 |
</div>
|
|
@@ -114,6 +115,7 @@ def generate(
|
|
| 114 |
upscaler_strength: float = 0.55,
|
| 115 |
upscale_by: float = 1.5,
|
| 116 |
json_params: str = "",
|
|
|
|
| 117 |
progress=gr.Progress(track_tqdm=True),
|
| 118 |
) -> Image:
|
| 119 |
if json_params:
|
|
@@ -154,6 +156,7 @@ def generate(
|
|
| 154 |
"num_inference_steps": num_inference_steps,
|
| 155 |
"seed": seed,
|
| 156 |
"sampler": sampler,
|
|
|
|
| 157 |
}
|
| 158 |
|
| 159 |
if use_upscaler:
|
|
@@ -170,46 +173,50 @@ def generate(
|
|
| 170 |
logger.info(json.dumps(metadata, indent=4))
|
| 171 |
|
| 172 |
try:
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 210 |
logger.info(f"Image saved as {filepath} with metadata")
|
| 211 |
|
| 212 |
-
return
|
| 213 |
except Exception as e:
|
| 214 |
logger.exception(f"An error occurred: {e}")
|
| 215 |
raise
|
|
@@ -229,16 +236,18 @@ def handle_image_click(evt: gr.SelectData):
|
|
| 229 |
return selected["image"], json.dumps(selected["metadata"], indent=2)
|
| 230 |
|
| 231 |
def generate_and_update_history(*args, **kwargs):
|
|
|
|
| 232 |
images, metadata = generate(*args, **kwargs)
|
| 233 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
| 240 |
if len(generation_history) > 20:
|
| 241 |
-
generation_history
|
| 242 |
return images[0], json.dumps(metadata, indent=2), update_history_list()
|
| 243 |
|
| 244 |
with open('characterfull.txt', 'r') as f:
|
|
@@ -262,6 +271,12 @@ if torch.cuda.is_available():
|
|
| 262 |
else:
|
| 263 |
pipe = None
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
with gr.Blocks(css="style.css") as demo:
|
| 266 |
gr.Markdown(DESCRIPTION)
|
| 267 |
|
|
@@ -365,6 +380,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 365 |
step=1,
|
| 366 |
value=28,
|
| 367 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
with gr.Accordion(label="Generation Parameters", open=False):
|
| 370 |
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
|
@@ -372,17 +394,25 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 372 |
generate_from_json = gr.Button("Generate from JSON")
|
| 373 |
|
| 374 |
with gr.Accordion("Generation History", open=False) as history_accordion:
|
| 375 |
-
|
| 376 |
-
label="
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
columns=5,
|
| 380 |
-
rows=2,
|
| 381 |
-
height="auto"
|
| 382 |
)
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
gr.Examples(
|
| 388 |
examples=config.examples,
|
|
@@ -422,6 +452,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 422 |
upscaler_strength,
|
| 423 |
upscale_by,
|
| 424 |
json_input,
|
|
|
|
| 425 |
]
|
| 426 |
|
| 427 |
prompt.submit(
|
|
@@ -483,5 +514,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 483 |
inputs=[],
|
| 484 |
outputs=[selected_image, selected_metadata]
|
| 485 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
|
| 27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 28 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 29 |
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
| 30 |
+
HISTORY_SECRET = os.getenv("HISTORY_SECRET", "default_secret")
|
| 31 |
|
| 32 |
MODEL = os.getenv(
|
| 33 |
"MODEL",
|
|
|
|
| 38 |
<div>
|
| 39 |
<h1 style="text-align: center;">High Definition Pony Diffusion</h1>
|
| 40 |
<p>Gradio demo for PonyDiffusion v6 with image gallery, json prompt support, advanced options and more.</p>
|
| 41 |
+
<p>❤️ Thanks for ✨5000 visits! Heart this space if you like it!</p>
|
| 42 |
<p>🔎 For more details about me, take a look at <a href="https://sergidev.me">My website</a>.</p>
|
| 43 |
<p>🌚 For dark mode compatibility, click <a href="https://sergidev.me/hdiffusion">here</a>.</p>
|
| 44 |
</div>
|
|
|
|
| 115 |
upscaler_strength: float = 0.55,
|
| 116 |
upscale_by: float = 1.5,
|
| 117 |
json_params: str = "",
|
| 118 |
+
batch_size: int = 1,
|
| 119 |
progress=gr.Progress(track_tqdm=True),
|
| 120 |
) -> Image:
|
| 121 |
if json_params:
|
|
|
|
| 156 |
"num_inference_steps": num_inference_steps,
|
| 157 |
"seed": seed,
|
| 158 |
"sampler": sampler,
|
| 159 |
+
"batch_size": batch_size,
|
| 160 |
}
|
| 161 |
|
| 162 |
if use_upscaler:
|
|
|
|
| 173 |
logger.info(json.dumps(metadata, indent=4))
|
| 174 |
|
| 175 |
try:
|
| 176 |
+
all_images = []
|
| 177 |
+
for _ in range(batch_size):
|
| 178 |
+
batch_generator = utils.seed_everything(random.randint(0, utils.MAX_SEED))
|
| 179 |
+
if use_upscaler:
|
| 180 |
+
latents = pipe(
|
| 181 |
+
prompt=prompt,
|
| 182 |
+
negative_prompt=negative_prompt,
|
| 183 |
+
width=width,
|
| 184 |
+
height=height,
|
| 185 |
+
guidance_scale=guidance_scale,
|
| 186 |
+
num_inference_steps=num_inference_steps,
|
| 187 |
+
generator=batch_generator,
|
| 188 |
+
output_type="latent",
|
| 189 |
+
).images
|
| 190 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 191 |
+
images = upscaler_pipe(
|
| 192 |
+
prompt=prompt,
|
| 193 |
+
negative_prompt=negative_prompt,
|
| 194 |
+
image=upscaled_latents,
|
| 195 |
+
guidance_scale=guidance_scale,
|
| 196 |
+
num_inference_steps=num_inference_steps,
|
| 197 |
+
strength=upscaler_strength,
|
| 198 |
+
generator=batch_generator,
|
| 199 |
+
output_type="pil",
|
| 200 |
+
).images
|
| 201 |
+
else:
|
| 202 |
+
images = pipe(
|
| 203 |
+
prompt=prompt,
|
| 204 |
+
negative_prompt=negative_prompt,
|
| 205 |
+
width=width,
|
| 206 |
+
height=height,
|
| 207 |
+
guidance_scale=guidance_scale,
|
| 208 |
+
num_inference_steps=num_inference_steps,
|
| 209 |
+
generator=batch_generator,
|
| 210 |
+
output_type="pil",
|
| 211 |
+
).images
|
| 212 |
+
all_images.extend(images)
|
| 213 |
+
|
| 214 |
+
if all_images and IS_COLAB:
|
| 215 |
+
for image in all_images:
|
| 216 |
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 217 |
logger.info(f"Image saved as {filepath} with metadata")
|
| 218 |
|
| 219 |
+
return all_images, metadata
|
| 220 |
except Exception as e:
|
| 221 |
logger.exception(f"An error occurred: {e}")
|
| 222 |
raise
|
|
|
|
| 236 |
return selected["image"], json.dumps(selected["metadata"], indent=2)
|
| 237 |
|
| 238 |
def generate_and_update_history(*args, **kwargs):
|
| 239 |
+
global generation_history
|
| 240 |
images, metadata = generate(*args, **kwargs)
|
| 241 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 242 |
+
for image in images:
|
| 243 |
+
generation_history.insert(0, {
|
| 244 |
+
"prompt": metadata["prompt"],
|
| 245 |
+
"timestamp": timestamp,
|
| 246 |
+
"image": image,
|
| 247 |
+
"metadata": metadata
|
| 248 |
+
})
|
| 249 |
if len(generation_history) > 20:
|
| 250 |
+
generation_history = generation_history[:20]
|
| 251 |
return images[0], json.dumps(metadata, indent=2), update_history_list()
|
| 252 |
|
| 253 |
with open('characterfull.txt', 'r') as f:
|
|
|
|
| 271 |
else:
|
| 272 |
pipe = None
|
| 273 |
|
| 274 |
+
def check_history_password(password):
|
| 275 |
+
if password == HISTORY_SECRET:
|
| 276 |
+
return gr.update(visible=True)
|
| 277 |
+
else:
|
| 278 |
+
return gr.update(visible=False)
|
| 279 |
+
|
| 280 |
with gr.Blocks(css="style.css") as demo:
|
| 281 |
gr.Markdown(DESCRIPTION)
|
| 282 |
|
|
|
|
| 380 |
step=1,
|
| 381 |
value=28,
|
| 382 |
)
|
| 383 |
+
batch_size = gr.Slider(
|
| 384 |
+
label="Batch Size",
|
| 385 |
+
minimum=1,
|
| 386 |
+
maximum=4,
|
| 387 |
+
step=1,
|
| 388 |
+
value=1,
|
| 389 |
+
)
|
| 390 |
|
| 391 |
with gr.Accordion(label="Generation Parameters", open=False):
|
| 392 |
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
|
|
|
| 394 |
generate_from_json = gr.Button("Generate from JSON")
|
| 395 |
|
| 396 |
with gr.Accordion("Generation History", open=False) as history_accordion:
|
| 397 |
+
history_password = gr.Textbox(
|
| 398 |
+
label="Global generation history",
|
| 399 |
+
type="password",
|
| 400 |
+
placeholder="Enter secret for generation history"
|
|
|
|
|
|
|
|
|
|
| 401 |
)
|
| 402 |
+
history_submit = gr.Button("Submit")
|
| 403 |
+
|
| 404 |
+
with gr.Group(visible=False) as history_content:
|
| 405 |
+
history_gallery = gr.Gallery(
|
| 406 |
+
label="History",
|
| 407 |
+
show_label=False,
|
| 408 |
+
elem_id="history_gallery",
|
| 409 |
+
columns=5,
|
| 410 |
+
rows=2,
|
| 411 |
+
height="auto"
|
| 412 |
+
)
|
| 413 |
+
with gr.Row():
|
| 414 |
+
selected_image = gr.Image(label="Selected Image", interactive=False)
|
| 415 |
+
selected_metadata = gr.JSON(label="Selected Metadata", show_label=False)
|
| 416 |
|
| 417 |
gr.Examples(
|
| 418 |
examples=config.examples,
|
|
|
|
| 452 |
upscaler_strength,
|
| 453 |
upscale_by,
|
| 454 |
json_input,
|
| 455 |
+
batch_size,
|
| 456 |
]
|
| 457 |
|
| 458 |
prompt.submit(
|
|
|
|
| 514 |
inputs=[],
|
| 515 |
outputs=[selected_image, selected_metadata]
|
| 516 |
)
|
| 517 |
+
|
| 518 |
+
history_submit.click(
|
| 519 |
+
fn=check_history_password,
|
| 520 |
+
inputs=[history_password],
|
| 521 |
+
outputs=[history_content],
|
| 522 |
+
)
|
| 523 |
|
| 524 |
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|