Spaces:
Running
on
Zero
Running
on
Zero
v3p2
Browse files
app.py
CHANGED
|
@@ -14,9 +14,206 @@ from datetime import datetime
|
|
| 14 |
from diffusers.models import AutoencoderKL
|
| 15 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
# ... (keep all the functions like load_pipeline, parse_json_parameters, apply_json_parameters, generate, get_random_prompt)
|
| 20 |
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
pipe = load_pipeline(MODEL)
|
|
|
|
| 14 |
from diffusers.models import AutoencoderKL
|
| 15 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
| 16 |
|
| 17 |
+
logging.basicConfig(level=logging.INFO)
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
DESCRIPTION = "PonyDiffusion V6 XL"
|
| 21 |
+
if not torch.cuda.is_available():
|
| 22 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
| 23 |
+
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 24 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
| 26 |
+
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
| 27 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
| 28 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 29 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 30 |
+
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
| 31 |
+
|
| 32 |
+
MODEL = os.getenv(
|
| 33 |
+
"MODEL",
|
| 34 |
+
"https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
torch.backends.cudnn.deterministic = True
|
| 38 |
+
torch.backends.cudnn.benchmark = False
|
| 39 |
+
|
| 40 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 41 |
+
|
| 42 |
+
def load_pipeline(model_name):
|
| 43 |
+
vae = AutoencoderKL.from_pretrained(
|
| 44 |
+
"madebyollin/sdxl-vae-fp16-fix",
|
| 45 |
+
torch_dtype=torch.float16,
|
| 46 |
+
)
|
| 47 |
+
pipeline = (
|
| 48 |
+
StableDiffusionXLPipeline.from_single_file
|
| 49 |
+
if MODEL.endswith(".safetensors")
|
| 50 |
+
else StableDiffusionXLPipeline.from_pretrained
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
pipe = pipeline(
|
| 54 |
+
model_name,
|
| 55 |
+
vae=vae,
|
| 56 |
+
torch_dtype=torch.float16,
|
| 57 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
| 58 |
+
use_safetensors=True,
|
| 59 |
+
add_watermarker=False,
|
| 60 |
+
use_auth_token=HF_TOKEN,
|
| 61 |
+
variant="fp16",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
pipe.to(device)
|
| 65 |
+
return pipe
|
| 66 |
+
|
| 67 |
+
def parse_json_parameters(json_str):
|
| 68 |
+
try:
|
| 69 |
+
params = json.loads(json_str)
|
| 70 |
+
return params
|
| 71 |
+
except json.JSONDecodeError:
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
def apply_json_parameters(json_str):
|
| 75 |
+
params = parse_json_parameters(json_str)
|
| 76 |
+
if params:
|
| 77 |
+
return (
|
| 78 |
+
params.get("prompt", ""),
|
| 79 |
+
params.get("negative_prompt", ""),
|
| 80 |
+
params.get("seed", 0),
|
| 81 |
+
params.get("width", 1024),
|
| 82 |
+
params.get("height", 1024),
|
| 83 |
+
params.get("guidance_scale", 7.0),
|
| 84 |
+
params.get("num_inference_steps", 30),
|
| 85 |
+
params.get("sampler", "DPM++ 2M SDE Karras"),
|
| 86 |
+
params.get("aspect_ratio", "1024 x 1024"),
|
| 87 |
+
params.get("use_upscaler", False),
|
| 88 |
+
params.get("upscaler_strength", 0.55),
|
| 89 |
+
params.get("upscale_by", 1.5),
|
| 90 |
+
)
|
| 91 |
+
return [gr.update()] * 12
|
| 92 |
+
|
| 93 |
+
def generate(
|
| 94 |
+
prompt: str,
|
| 95 |
+
negative_prompt: str = "",
|
| 96 |
+
seed: int = 0,
|
| 97 |
+
custom_width: int = 1024,
|
| 98 |
+
custom_height: int = 1024,
|
| 99 |
+
guidance_scale: float = 7.0,
|
| 100 |
+
num_inference_steps: int = 30,
|
| 101 |
+
sampler: str = "DPM++ 2M SDE Karras",
|
| 102 |
+
aspect_ratio_selector: str = "1024 x 1024",
|
| 103 |
+
use_upscaler: bool = False,
|
| 104 |
+
upscaler_strength: float = 0.55,
|
| 105 |
+
upscale_by: float = 1.5,
|
| 106 |
+
progress=gr.Progress(track_tqdm=True),
|
| 107 |
+
) -> Image:
|
| 108 |
+
generator = utils.seed_everything(seed)
|
| 109 |
+
|
| 110 |
+
width, height = utils.aspect_ratio_handler(
|
| 111 |
+
aspect_ratio_selector,
|
| 112 |
+
custom_width,
|
| 113 |
+
custom_height,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
width, height = utils.preprocess_image_dimensions(width, height)
|
| 117 |
+
|
| 118 |
+
backup_scheduler = pipe.scheduler
|
| 119 |
+
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
|
| 120 |
+
|
| 121 |
+
if use_upscaler:
|
| 122 |
+
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
| 123 |
+
metadata = {
|
| 124 |
+
"prompt": prompt,
|
| 125 |
+
"negative_prompt": negative_prompt,
|
| 126 |
+
"resolution": f"{width} x {height}",
|
| 127 |
+
"guidance_scale": guidance_scale,
|
| 128 |
+
"num_inference_steps": num_inference_steps,
|
| 129 |
+
"seed": seed,
|
| 130 |
+
"sampler": sampler,
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
if use_upscaler:
|
| 134 |
+
new_width = int(width * upscale_by)
|
| 135 |
+
new_height = int(height * upscale_by)
|
| 136 |
+
metadata["use_upscaler"] = {
|
| 137 |
+
"upscale_method": "nearest-exact",
|
| 138 |
+
"upscaler_strength": upscaler_strength,
|
| 139 |
+
"upscale_by": upscale_by,
|
| 140 |
+
"new_resolution": f"{new_width} x {new_height}",
|
| 141 |
+
}
|
| 142 |
+
else:
|
| 143 |
+
metadata["use_upscaler"] = None
|
| 144 |
+
logger.info(json.dumps(metadata, indent=4))
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
if use_upscaler:
|
| 148 |
+
latents = pipe(
|
| 149 |
+
prompt=prompt,
|
| 150 |
+
negative_prompt=negative_prompt,
|
| 151 |
+
width=width,
|
| 152 |
+
height=height,
|
| 153 |
+
guidance_scale=guidance_scale,
|
| 154 |
+
num_inference_steps=num_inference_steps,
|
| 155 |
+
generator=generator,
|
| 156 |
+
output_type="latent",
|
| 157 |
+
).images
|
| 158 |
+
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
|
| 159 |
+
images = upscaler_pipe(
|
| 160 |
+
prompt=prompt,
|
| 161 |
+
negative_prompt=negative_prompt,
|
| 162 |
+
image=upscaled_latents,
|
| 163 |
+
guidance_scale=guidance_scale,
|
| 164 |
+
num_inference_steps=num_inference_steps,
|
| 165 |
+
strength=upscaler_strength,
|
| 166 |
+
generator=generator,
|
| 167 |
+
output_type="pil",
|
| 168 |
+
).images
|
| 169 |
+
else:
|
| 170 |
+
images = pipe(
|
| 171 |
+
prompt=prompt,
|
| 172 |
+
negative_prompt=negative_prompt,
|
| 173 |
+
width=width,
|
| 174 |
+
height=height,
|
| 175 |
+
guidance_scale=guidance_scale,
|
| 176 |
+
num_inference_steps=num_inference_steps,
|
| 177 |
+
generator=generator,
|
| 178 |
+
output_type="pil",
|
| 179 |
+
).images
|
| 180 |
+
|
| 181 |
+
if images and IS_COLAB:
|
| 182 |
+
for image in images:
|
| 183 |
+
filepath = utils.save_image(image, metadata, OUTPUT_DIR)
|
| 184 |
+
logger.info(f"Image saved as {filepath} with metadata")
|
| 185 |
+
|
| 186 |
+
# Update history after generation
|
| 187 |
+
history = gr.get_state("history") or []
|
| 188 |
+
history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata})
|
| 189 |
+
gr.set_state("history", history[:10]) # Keep only the last 10 entries
|
| 190 |
+
|
| 191 |
+
return images, metadata, gr.update(choices=[h["prompt"] for h in history])
|
| 192 |
+
except Exception as e:
|
| 193 |
+
logger.exception(f"An error occurred: {e}")
|
| 194 |
+
raise
|
| 195 |
+
finally:
|
| 196 |
+
if use_upscaler:
|
| 197 |
+
del upscaler_pipe
|
| 198 |
+
pipe.scheduler = backup_scheduler
|
| 199 |
+
utils.free_memory()
|
| 200 |
+
|
| 201 |
+
def get_random_prompt():
|
| 202 |
+
anime_characters = [
|
| 203 |
+
"Naruto Uzumaki", "Monkey D. Luffy", "Goku", "Eren Yeager", "Light Yagami",
|
| 204 |
+
"Lelouch Lamperouge", "Edward Elric", "Levi Ackerman", "Spike Spiegel",
|
| 205 |
+
"Sakura Haruno", "Mikasa Ackerman", "Asuka Langley Soryu", "Rem", "Megumin",
|
| 206 |
+
"Violet Evergarden"
|
| 207 |
+
]
|
| 208 |
+
styles = ["pixel art", "stylized anime", "digital art", "watercolor", "sketch"]
|
| 209 |
+
scores = ["score_9", "score_8_up", "score_7_up"]
|
| 210 |
+
|
| 211 |
+
character = random.choice(anime_characters)
|
| 212 |
+
style = random.choice(styles)
|
| 213 |
+
score = ", ".join(random.sample(scores, k=3))
|
| 214 |
+
|
| 215 |
+
return f"{score}, {character}, {style}, show accurate"
|
| 216 |
|
|
|
|
| 217 |
|
| 218 |
if torch.cuda.is_available():
|
| 219 |
pipe = load_pipeline(MODEL)
|