Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gc | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import json | |
| import spaces | |
| import config | |
| import utils | |
| import logging | |
| from PIL import Image, PngImagePlugin | |
| from datetime import datetime | |
| from diffusers.models import AutoencoderKL | |
| from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline | |
| import random | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>" | |
| IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
| MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
| OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") | |
| HISTORY_SECRET = os.getenv("HISTORY_SECRET", "default_secret") | |
| MODEL = os.getenv( | |
| "MODEL", | |
| "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors", | |
| ) | |
| DESCRIPTION = ''' | |
| <div> | |
| <h1 style="text-align: center;">High Definition Pony Diffusion</h1> | |
| <p>Gradio demo for PonyDiffusion v6 with image gallery, json prompt support, advanced options and more.</p> | |
| <p>✨ Thanks for 15k users! Please ❤️ heart this space if you find it helpful.</p> | |
| <p>🔎 To start, click the random character button to randomly select a character if you need inspiration.</a>.</p> | |
| <p>🌚 Next, select the Add Details button to make the render more detailed and realistic.</p> | |
| <p>💸 Support me with a donation on Ko-FI, click <a href="https://ko-fi.com/sergidev#payment-widget">here</a>.</p> | |
| </div> | |
| ''' | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| def load_pipeline(model_name): | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipeline = ( | |
| StableDiffusionXLPipeline.from_single_file | |
| if MODEL.endswith(".safetensors") | |
| else StableDiffusionXLPipeline.from_pretrained | |
| ) | |
| pipe = pipeline( | |
| model_name, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| custom_pipeline="lpw_stable_diffusion_xl", | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| use_auth_token=HF_TOKEN, | |
| variant="fp16", | |
| ) | |
| pipe.to(device) | |
| return pipe | |
| def parse_json_parameters(json_str): | |
| try: | |
| params = json.loads(json_str) | |
| required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler'] | |
| for key in required_keys: | |
| if key not in params: | |
| raise ValueError(f"Missing required key: {key}") | |
| width, height = map(int, params['resolution'].split(' x ')) | |
| return { | |
| 'prompt': params['prompt'], | |
| 'negative_prompt': params['negative_prompt'], | |
| 'seed': params['seed'], | |
| 'width': width, | |
| 'height': height, | |
| 'guidance_scale': params['guidance_scale'], | |
| 'num_inference_steps': params['num_inference_steps'], | |
| 'sampler': params['sampler'], | |
| 'use_upscaler': params.get('use_upscaler', False) | |
| } | |
| except json.JSONDecodeError: | |
| raise ValueError("Invalid JSON format") | |
| except Exception as e: | |
| raise ValueError(f"Error parsing JSON: {str(e)}") | |
| def generate( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| seed: int = 0, | |
| custom_width: int = 1024, | |
| custom_height: int = 1024, | |
| guidance_scale: float = 7.0, | |
| num_inference_steps: int = 30, | |
| sampler: str = "DPM++ 2M SDE Karras", | |
| aspect_ratio_selector: str = "1024 x 1024", | |
| use_upscaler: bool = False, | |
| upscaler_strength: float = 0.55, | |
| upscale_by: float = 1.5, | |
| json_params: str = "", | |
| batch_size: int = 1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> Image: | |
| if json_params: | |
| try: | |
| params = parse_json_parameters(json_params) | |
| prompt = params['prompt'] | |
| negative_prompt = params['negative_prompt'] | |
| seed = params['seed'] | |
| custom_width = params['width'] | |
| custom_height = params['height'] | |
| guidance_scale = params['guidance_scale'] | |
| num_inference_steps = params['num_inference_steps'] | |
| sampler = params['sampler'] | |
| use_upscaler = params['use_upscaler'] | |
| except ValueError as e: | |
| raise gr.Error(str(e)) | |
| generator = utils.seed_everything(seed) | |
| width, height = utils.aspect_ratio_handler( | |
| aspect_ratio_selector, | |
| custom_width, | |
| custom_height, | |
| ) | |
| width, height = utils.preprocess_image_dimensions(width, height) | |
| backup_scheduler = pipe.scheduler | |
| pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) | |
| if use_upscaler: | |
| upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) | |
| metadata = { | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "resolution": f"{width} x {height}", | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "seed": seed, | |
| "sampler": sampler, | |
| "batch_size": batch_size, | |
| } | |
| if use_upscaler: | |
| new_width = int(width * upscale_by) | |
| new_height = int(height * upscale_by) | |
| metadata["use_upscaler"] = { | |
| "upscale_method": "nearest-exact", | |
| "upscaler_strength": upscaler_strength, | |
| "upscale_by": upscale_by, | |
| "new_resolution": f"{new_width} x {new_height}", | |
| } | |
| else: | |
| metadata["use_upscaler"] = None | |
| logger.info(json.dumps(metadata, indent=4)) | |
| try: | |
| all_images = [] | |
| for _ in range(batch_size): | |
| batch_generator = utils.seed_everything(random.randint(0, utils.MAX_SEED)) | |
| if use_upscaler: | |
| latents = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=batch_generator, | |
| output_type="latent", | |
| ).images | |
| upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) | |
| images = upscaler_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=upscaled_latents, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| strength=upscaler_strength, | |
| generator=batch_generator, | |
| output_type="pil", | |
| ).images | |
| else: | |
| images = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=batch_generator, | |
| output_type="pil", | |
| ).images | |
| all_images.extend(images) | |
| if all_images and IS_COLAB: | |
| for image in all_images: | |
| filepath = utils.save_image(image, metadata, OUTPUT_DIR) | |
| logger.info(f"Image saved as {filepath} with metadata") | |
| return all_images, metadata | |
| except Exception as e: | |
| logger.exception(f"An error occurred: {e}") | |
| raise | |
| finally: | |
| if use_upscaler: | |
| del upscaler_pipe | |
| pipe.scheduler = backup_scheduler | |
| utils.free_memory() | |
| generation_history = [] | |
| def update_history_list(): | |
| return [item["image"] for item in generation_history] | |
| def handle_image_click(evt: gr.SelectData): | |
| selected = generation_history[evt.index] | |
| return selected["image"], json.dumps(selected["metadata"], indent=2) | |
| def generate_and_update_history(*args, **kwargs): | |
| global generation_history | |
| images, metadata = generate(*args, **kwargs) | |
| timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| for image in images: | |
| generation_history.insert(0, { | |
| "prompt": metadata["prompt"], | |
| "timestamp": timestamp, | |
| "image": image, | |
| "metadata": metadata | |
| }) | |
| if len(generation_history) > 20: | |
| generation_history = generation_history[:20] | |
| return images[0], json.dumps(metadata, indent=2), update_history_list() | |
| with open('characterfull.txt', 'r') as f: | |
| characters = [line.strip() for line in f.readlines()] | |
| def get_random_character(): | |
| return random.choice(characters) | |
| def add_quality_tags(prompt, negative_prompt): | |
| positive_tags = "score_9, score_8_up, score_7_up, score_6_up, dramatic lighting, rating_safe" | |
| negative_tags = "score_4, score_5, nsfw, nude, rating_explicit, simple background, monochrome, extra fingers, distorted hands, distorted fingers,low quality, lowres, bad anatomy, worst quality" | |
| new_prompt = f"{positive_tags}, {prompt}" if prompt else positive_tags | |
| new_negative_prompt = f"{negative_tags}, {negative_prompt}" if negative_prompt else negative_tags | |
| return new_prompt, new_negative_prompt | |
| if torch.cuda.is_available(): | |
| pipe = load_pipeline(MODEL) | |
| logger.info("Loaded on Device!") | |
| else: | |
| pipe = None | |
| def check_history_password(password): | |
| if password == HISTORY_SECRET: | |
| return gr.update(visible=True) | |
| else: | |
| return gr.update(visible=False) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton( | |
| value="Duplicate Space for private use", | |
| elem_id="duplicate-button", | |
| visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=5, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button( | |
| "Generate", | |
| variant="primary", | |
| scale=0 | |
| ) | |
| with gr.Row(): | |
| random_character_button = gr.Button("Random Character") | |
| add_quality_tags_button = gr.Button("Add quality tags") | |
| result = gr.Image( | |
| label="Result", | |
| show_label=False | |
| ) | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| max_lines=5, | |
| placeholder="Enter a negative prompt", | |
| value="" | |
| ) | |
| aspect_ratio_selector = gr.Radio( | |
| label="Aspect Ratio", | |
| choices=config.aspect_ratios, | |
| value="1024 x 1024", | |
| container=True, | |
| ) | |
| with gr.Group(visible=False) as custom_resolution: | |
| with gr.Row(): | |
| custom_width = gr.Slider( | |
| label="Width", | |
| minimum=MIN_IMAGE_SIZE, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=8, | |
| value=1024, | |
| ) | |
| custom_height = gr.Slider( | |
| label="Height", | |
| minimum=MIN_IMAGE_SIZE, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=8, | |
| value=1024, | |
| ) | |
| use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) | |
| with gr.Row() as upscaler_row: | |
| upscaler_strength = gr.Slider( | |
| label="Strength", | |
| minimum=0, | |
| maximum=1, | |
| step=0.05, | |
| value=0.55, | |
| visible=False, | |
| ) | |
| upscale_by = gr.Slider( | |
| label="Upscale by", | |
| minimum=1, | |
| maximum=1.5, | |
| step=0.1, | |
| value=1.5, | |
| visible=False, | |
| ) | |
| sampler = gr.Dropdown( | |
| label="Sampler", | |
| choices=config.sampler_list, | |
| interactive=True, | |
| value="DPM++ 2M SDE Karras", | |
| ) | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Group(): | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=1, | |
| maximum=12, | |
| step=0.1, | |
| value=7.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| batch_size = gr.Slider( | |
| label="Batch Size", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=1, | |
| ) | |
| with gr.Accordion(label="Generation Parameters", open=False): | |
| gr_metadata = gr.JSON(label="Metadata", show_label=False) | |
| json_input = gr.TextArea(label="Edit/Paste JSON Parameters", placeholder="Paste or edit JSON parameters here") | |
| generate_from_json = gr.Button("Generate from JSON") | |
| with gr.Accordion("Generation History", open=False) as history_accordion: | |
| history_password = gr.Textbox( | |
| label="Enable generation history; do not generate illegal or harmful content.", | |
| type="password", | |
| placeholder="GLOBAL GENERATION HISTORY IS DISABLED" | |
| ) | |
| history_submit = gr.Button("Submit") | |
| with gr.Group(visible=False) as history_content: | |
| history_gallery = gr.Gallery( | |
| label="History", | |
| show_label=False, | |
| elem_id="history_gallery", | |
| columns=5, | |
| rows=2, | |
| height="auto" | |
| ) | |
| with gr.Row(): | |
| selected_image = gr.Image(label="Selected Image", interactive=False) | |
| selected_metadata = gr.JSON(label="Selected Metadata", show_label=False) | |
| gr.Examples( | |
| examples=config.examples, | |
| inputs=prompt, | |
| outputs=[result, gr_metadata], | |
| fn=lambda *args, **kwargs: generate_and_update_history(*args, use_upscaler=True, **kwargs), | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| use_upscaler.change( | |
| fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], | |
| inputs=use_upscaler, | |
| outputs=[upscaler_strength, upscale_by], | |
| queue=False, | |
| api_name=False, | |
| ) | |
| aspect_ratio_selector.change( | |
| fn=lambda x: gr.update(visible=x == "Custom"), | |
| inputs=aspect_ratio_selector, | |
| outputs=custom_resolution, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| inputs = [ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| custom_width, | |
| custom_height, | |
| guidance_scale, | |
| num_inference_steps, | |
| sampler, | |
| aspect_ratio_selector, | |
| use_upscaler, | |
| upscaler_strength, | |
| upscale_by, | |
| json_input, | |
| batch_size, | |
| ] | |
| prompt.submit( | |
| fn=utils.randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_and_update_history, | |
| inputs=inputs, | |
| outputs=[result, gr_metadata, history_gallery], | |
| ) | |
| negative_prompt.submit( | |
| fn=utils.randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_and_update_history, | |
| inputs=inputs, | |
| outputs=[result, gr_metadata, history_gallery], | |
| ) | |
| run_button.click( | |
| fn=utils.randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_and_update_history, | |
| inputs=inputs, | |
| outputs=[result, gr_metadata, history_gallery], | |
| ) | |
| generate_from_json.click( | |
| fn=generate_and_update_history, | |
| inputs=inputs, | |
| outputs=[result, gr_metadata, history_gallery], | |
| ) | |
| random_character_button.click( | |
| fn=get_random_character, | |
| inputs=[], | |
| outputs=[prompt] | |
| ) | |
| add_quality_tags_button.click( | |
| fn=add_quality_tags, | |
| inputs=[prompt, negative_prompt], | |
| outputs=[prompt, negative_prompt] | |
| ) | |
| history_gallery.select( | |
| fn=handle_image_click, | |
| inputs=[], | |
| outputs=[selected_image, selected_metadata] | |
| ) | |
| history_submit.click( | |
| fn=check_history_password, | |
| inputs=[history_password], | |
| outputs=[history_content], | |
| ) | |
| demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) |