Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import gc | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import json | |
| import spaces | |
| import config | |
| import utils | |
| import logging | |
| from PIL import Image, PngImagePlugin | |
| from datetime import datetime | |
| from diffusers.models import AutoencoderKL | |
| from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| DESCRIPTION = "PonyDiffusion V6 XL" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>" | |
| IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
| MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
| OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") | |
| MODEL = os.getenv( | |
| "MODEL", | |
| "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors", | |
| ) | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load pipeline function remains unchanged | |
| def parse_json_parameters(json_str): | |
| try: | |
| params = json.loads(json_str) | |
| return params | |
| except json.JSONDecodeError: | |
| return None | |
| def apply_json_parameters(json_str): | |
| params = parse_json_parameters(json_str) | |
| if params: | |
| return ( | |
| params.get("prompt", ""), | |
| params.get("negative_prompt", ""), | |
| params.get("seed", 0), | |
| params.get("width", 1024), | |
| params.get("height", 1024), | |
| params.get("guidance_scale", 7.0), | |
| params.get("num_inference_steps", 30), | |
| params.get("sampler", "DPM++ 2M SDE Karras"), | |
| params.get("aspect_ratio", "1024 x 1024"), | |
| params.get("use_upscaler", False), | |
| params.get("upscaler_strength", 0.55), | |
| params.get("upscale_by", 1.5), | |
| ) | |
| return [gr.update()] * 12 | |
| def generate( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| seed: int = 0, | |
| custom_width: int = 1024, | |
| custom_height: int = 1024, | |
| guidance_scale: float = 7.0, | |
| num_inference_steps: int = 30, | |
| sampler: str = "DPM++ 2M SDE Karras", | |
| aspect_ratio_selector: str = "1024 x 1024", | |
| use_upscaler: bool = False, | |
| upscaler_strength: float = 0.55, | |
| upscale_by: float = 1.5, | |
| progress=gr.Progress(track_tqdm=True), | |
| ) -> Image: | |
| # Existing generate function code... | |
| # Update history after generation | |
| history = gr.get_state("history") or [] | |
| history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata}) | |
| gr.set_state("history", history[:10]) # Keep only the last 10 entries | |
| return images, metadata, gr.update(choices=[h["prompt"] for h in history]) | |
| def get_random_prompt(): | |
| return random.choice(config.examples) | |
| with gr.Blocks(css="style.css") as demo: | |
| # Existing UI elements... | |
| with gr.Accordion(label="JSON Parameters", open=False): | |
| json_input = gr.TextArea(label="Input JSON parameters") | |
| apply_json_button = gr.Button("Apply JSON Parameters") | |
| with gr.Row(): | |
| clear_button = gr.Button("Clear All") | |
| random_prompt_button = gr.Button("Random Prompt") | |
| history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True) | |
| # Connect components | |
| apply_json_button.click( | |
| fn=apply_json_parameters, | |
| inputs=json_input, | |
| outputs=[prompt, negative_prompt, seed, custom_width, custom_height, | |
| guidance_scale, num_inference_steps, sampler, | |
| aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by] | |
| ) | |
| clear_button.click( | |
| fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0), | |
| gr.update(value=1024), gr.update(value=1024), | |
| gr.update(value=7.0), gr.update(value=30), | |
| gr.update(value="DPM++ 2M SDE Karras"), | |
| gr.update(value="1024 x 1024"), gr.update(value=False), | |
| gr.update(value=0.55), gr.update(value=1.5)), | |
| inputs=[], | |
| outputs=[prompt, negative_prompt, seed, custom_width, custom_height, | |
| guidance_scale, num_inference_steps, sampler, | |
| aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by] | |
| ) | |
| random_prompt_button.click( | |
| fn=get_random_prompt, | |
| inputs=[], | |
| outputs=prompt | |
| ) | |
| history_dropdown.change( | |
| fn=lambda x: gr.update(value=x), | |
| inputs=history_dropdown, | |
| outputs=prompt | |
| ) | |
| # Existing event handlers... | |
| demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) |