Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,69 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
with gr.Sidebar():
|
| 65 |
-
gr.LoginButton()
|
| 66 |
-
chatbot.render()
|
| 67 |
-
|
| 68 |
|
| 69 |
-
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
+
from langchain_community.vectorstores import FAISS
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain.prompts import PromptTemplate
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
+
# Carica modello GRPO fine-tuned
|
| 9 |
+
model_name = "SelmaNajih001/GRPORagMinstral2"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
pipe = pipeline(
|
| 12 |
+
"text-generation",
|
| 13 |
+
model=model_name,
|
| 14 |
+
tokenizer=model_name,
|
| 15 |
+
max_new_tokens=400,
|
| 16 |
+
temperature=0.5,
|
| 17 |
+
num_beams=6,
|
| 18 |
+
repetition_penalty=1.5
|
| 19 |
+
)
|
| 20 |
|
| 21 |
+
# Prompt template
|
| 22 |
+
prompt_template = """
|
| 23 |
+
You are a financial market analyst.
|
| 24 |
+
Before making a prediction you always analyze the past, which is given by the Context below.
|
| 25 |
+
Answer the Question based on what happened in the past.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
Please respond with:
|
| 28 |
+
- Chosen Stock: (name)
|
| 29 |
+
- Prediction: (price change)
|
| 30 |
+
- Explanation: (brief and clear)
|
| 31 |
|
| 32 |
+
Context:
|
| 33 |
+
{context}
|
| 34 |
|
| 35 |
+
Question:
|
| 36 |
+
{question}
|
| 37 |
+
"""
|
| 38 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 39 |
|
| 40 |
+
# Carica FAISS dal dataset
|
| 41 |
+
faiss_index_path = hf_hub_download(repo_id="SelmaNajih001/DatasetStockFAISS", filename="index.faiss")
|
| 42 |
+
docstore_path = hf_hub_download(repo_id="SelmaNajih001/DatasetStockFAISS", filename="docstore.json")
|
| 43 |
|
| 44 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 45 |
+
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
| 46 |
+
def analisi_finanziaria(query, k=4):
|
| 47 |
+
# Recupera i documenti più rilevanti
|
| 48 |
+
docs_found = vectorstore.similarity_search(query, k=k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# Costruisci contesto concatenando i documenti
|
| 51 |
+
context = "\n".join([doc.page_content for doc in docs_found])
|
| 52 |
|
| 53 |
+
# Costruisci prompt finale
|
| 54 |
+
final_prompt = prompt.format(context=context, question=query)
|
| 55 |
|
| 56 |
+
# Genera risposta
|
| 57 |
+
result = pipe(final_prompt)[0]['generated_text']
|
| 58 |
+
return result
|
| 59 |
+
|
| 60 |
+
iface = gr.Interface(
|
| 61 |
+
fn=analisi_finanziaria,
|
| 62 |
+
inputs=gr.Textbox(label="Inserisci evento o domanda"),
|
| 63 |
+
outputs=gr.Textbox(label="Predizione"),
|
| 64 |
+
title="GRPO Financial Analyst",
|
| 65 |
+
description="Inserisci un evento finanziario, il modello GRPO analizzerà il contesto storico e fornirà una previsione."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|