SelmaNajih001 commited on
Commit
d19d38e
·
verified ·
1 Parent(s): 8ad5054

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -56
app.py CHANGED
@@ -1,70 +1,69 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
 
19
- messages = [{"role": "system", "content": system_message}]
 
 
 
20
 
21
- messages.extend(history)
 
22
 
23
- messages.append({"role": "user", "content": message})
 
 
 
24
 
25
- response = ""
 
 
26
 
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
 
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+ from langchain_community.vectorstores import FAISS
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain.prompts import PromptTemplate
6
+ from huggingface_hub import hf_hub_download
7
 
8
+ # Carica modello GRPO fine-tuned
9
+ model_name = "SelmaNajih001/GRPORagMinstral2"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ pipe = pipeline(
12
+ "text-generation",
13
+ model=model_name,
14
+ tokenizer=model_name,
15
+ max_new_tokens=400,
16
+ temperature=0.5,
17
+ num_beams=6,
18
+ repetition_penalty=1.5
19
+ )
20
 
21
+ # Prompt template
22
+ prompt_template = """
23
+ You are a financial market analyst.
24
+ Before making a prediction you always analyze the past, which is given by the Context below.
25
+ Answer the Question based on what happened in the past.
 
 
 
 
 
 
 
 
26
 
27
+ Please respond with:
28
+ - Chosen Stock: (name)
29
+ - Prediction: (price change)
30
+ - Explanation: (brief and clear)
31
 
32
+ Context:
33
+ {context}
34
 
35
+ Question:
36
+ {question}
37
+ """
38
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
39
 
40
+ # Carica FAISS dal dataset
41
+ faiss_index_path = hf_hub_download(repo_id="SelmaNajih001/DatasetStockFAISS", filename="index.faiss")
42
+ docstore_path = hf_hub_download(repo_id="SelmaNajih001/DatasetStockFAISS", filename="docstore.json")
43
 
44
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
45
+ vectorstore = FAISS.load_local("faiss_index", embeddings)
46
+ def analisi_finanziaria(query, k=4):
47
+ # Recupera i documenti più rilevanti
48
+ docs_found = vectorstore.similarity_search(query, k=k)
 
 
 
 
 
 
49
 
50
+ # Costruisci contesto concatenando i documenti
51
+ context = "\n".join([doc.page_content for doc in docs_found])
52
 
53
+ # Costruisci prompt finale
54
+ final_prompt = prompt.format(context=context, question=query)
55
 
56
+ # Genera risposta
57
+ result = pipe(final_prompt)[0]['generated_text']
58
+ return result
59
+
60
+ iface = gr.Interface(
61
+ fn=analisi_finanziaria,
62
+ inputs=gr.Textbox(label="Inserisci evento o domanda"),
63
+ outputs=gr.Textbox(label="Predizione"),
64
+ title="GRPO Financial Analyst",
65
+ description="Inserisci un evento finanziario, il modello GRPO analizzerà il contesto storico e fornirà una previsione."
 
 
 
 
 
 
 
 
66
  )
67
 
68
+ iface.launch()
 
 
 
 
69