|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
from langchain_community.vectorstores import FAISS |
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
|
from langchain.prompts import PromptTemplate |
|
|
from huggingface_hub import hf_hub_download |
|
|
import os |
|
|
from huggingface_hub import login |
|
|
|
|
|
hf_token = os.environ["HF_TOKEN"] |
|
|
login(token=hf_token) |
|
|
|
|
|
|
|
|
|
|
|
model_name = "SelmaNajih001/GRPORagMinstral2" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
pipe = pipeline( |
|
|
"text-generation", |
|
|
model=model_name, |
|
|
tokenizer=model_name, |
|
|
max_new_tokens=400, |
|
|
temperature=0.5, |
|
|
num_beams=6, |
|
|
repetition_penalty=1.5 |
|
|
) |
|
|
|
|
|
|
|
|
prompt_template = """ |
|
|
You are a financial market analyst. |
|
|
Before making a prediction you always analyze the past, which is given by the Context below. |
|
|
Answer the Question based on what happened in the past. |
|
|
|
|
|
Please respond with: |
|
|
- Chosen Stock: (name) |
|
|
- Prediction: (price change) |
|
|
- Explanation: (brief and clear) |
|
|
|
|
|
Context: |
|
|
{context} |
|
|
|
|
|
Question: |
|
|
{question} |
|
|
""" |
|
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") |
|
|
|
|
|
|
|
|
import tempfile |
|
|
tmp_dir = tempfile.mkdtemp() |
|
|
|
|
|
local_faiss_dir = "./faiss_index" |
|
|
|
|
|
vectorstore = FAISS.load_local( |
|
|
local_faiss_dir, |
|
|
embeddings |
|
|
) |
|
|
|
|
|
|
|
|
def analisi_finanziaria(query, k=4): |
|
|
|
|
|
docs_found = vectorstore.similarity_search(query, k=k) |
|
|
|
|
|
|
|
|
context = "\n".join([doc.page_content for doc in docs_found]) |
|
|
|
|
|
|
|
|
final_prompt = prompt.format(context=context, question=query) |
|
|
|
|
|
|
|
|
result = pipe(final_prompt)[0]['generated_text'] |
|
|
return result |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=analisi_finanziaria, |
|
|
inputs=gr.Textbox(label="Enter event or question"), |
|
|
outputs=gr.Textbox(label="Prediction"), |
|
|
title="GRPO Financial Analyst", |
|
|
description="Enter a financial event, the GRPO model will analyze historical context and provide a prediction." |
|
|
) |
|
|
|
|
|
|
|
|
iface.launch() |
|
|
|
|
|
|