Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from collections import defaultdict | |
| import json | |
| import gradio as gr | |
| # Load models and experiments | |
| with open("experiments.json") as f: | |
| experiments = json.load(f) | |
| MODELS = list(experiments.keys()) | |
| MODELS = [m for m in MODELS if m.startswith("google/gemma-3")] | |
| def load_details_and_results(model, benchmark, experiment_tag): | |
| def worker(example): | |
| example["predictions"] = example["predictions"] | |
| example["gold"] = example["gold"][0] | |
| example["metrics"] = example["metrics"] | |
| return example | |
| repo = f"OpenEvals/details_{model.replace('/', '__')}_private" | |
| subset = experiments[model]["benchmarks"][benchmark]["subset"].replace("|", "_").replace(":", "_") | |
| split = experiments[model]["benchmarks"][benchmark]["tags"][experiment_tag].replace("-", "_") | |
| details = load_dataset(repo, subset, split=split) | |
| results = load_dataset(repo, "results", split=split) | |
| results = eval(results[0]["results"]) | |
| columns_to_keep = ['full_prompt', 'gold', 'metrics', 'predictions'] | |
| details = details.select_columns(columns_to_keep) | |
| details = details.map(worker) | |
| return details, results | |
| # Load all experiment details | |
| experiment_details = defaultdict(dict) | |
| for model in MODELS: | |
| for benchmark, benchmark_details in experiments[model]["benchmarks"].items(): | |
| subset = benchmark_details["subset"] | |
| for experiment_tag in benchmark_details["tags"]: | |
| details, _ = load_details_and_results(model, benchmark, experiment_tag) | |
| experiment_details[model][subset] = details | |
| def display_model_comparison(selected_models, benchmark, example_index): | |
| if not selected_models: | |
| return "Please select at least one model to compare." | |
| # Filter out models that don't have the selected benchmark | |
| available_models = [model for model in selected_models if benchmark in experiment_details[model]] | |
| if not available_models: | |
| return f"No models have results for benchmark: {benchmark}" | |
| outputs = [] | |
| for model in available_models: # Changed from selected_models to available_models | |
| try: | |
| example = experiment_details[model][benchmark][example_index] | |
| outputs.append({ | |
| 'Model': model.split('/')[-1], | |
| 'Prediction': example['predictions'][0] if example['predictions'] else '', | |
| 'Prompt': example['full_prompt'], | |
| 'Metrics': example['metrics'], | |
| 'Gold': example['gold'] | |
| }) | |
| except (KeyError, IndexError): | |
| continue | |
| if not outputs: | |
| return "No results found for the selected combination." | |
| # Create HTML output with all models | |
| html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n" | |
| # Show gold answer at the top with distinct styling | |
| if outputs: | |
| html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n" | |
| html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n" | |
| html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n" | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n" | |
| html_output += "</div>\n" | |
| html_output += "</div>\n" | |
| for output in outputs: | |
| html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n" | |
| html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n" | |
| # Format metrics as a clean table | |
| html_output += "<details open style='margin-bottom: 15px;'>\n" | |
| html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n" | |
| metrics = output['Metrics'] | |
| if isinstance(metrics, str): | |
| metrics = eval(metrics) | |
| html_output += "<div style='overflow-x: auto;'>\n" | |
| html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n" | |
| for key, value in metrics.items(): | |
| if isinstance(value, float): | |
| value = f"{value:.3f}" | |
| html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n" | |
| html_output += "</table>\n" | |
| html_output += "</div>\n" | |
| html_output += "</details>\n\n" | |
| # Handle prompt formatting with better styling | |
| html_output += "<details style='margin-bottom: 15px;'>\n" | |
| html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n" | |
| html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" | |
| prompt_text = output['Prompt'] | |
| if isinstance(prompt_text, list): | |
| for i, msg in enumerate(prompt_text): | |
| if isinstance(msg, dict) and 'content' in msg: | |
| role = msg.get('role', 'message').title() | |
| html_output += "<div style='margin-bottom: 10px;'>\n" | |
| html_output += f"<strong>{role}:</strong>\n" | |
| html_output += "<div style='overflow-x: auto;'>\n" | |
| # Escape HTML in content | |
| content = msg['content'].replace('<', '<').replace('>', '>') | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{content}</code></pre>\n" | |
| html_output += "</div>\n" | |
| html_output += "</div>\n" | |
| else: | |
| html_output += "<div style='margin-bottom: 10px;'>\n" | |
| html_output += "<div style='overflow-x: auto;'>\n" | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n" | |
| html_output += "</div>\n" | |
| html_output += "</div>\n" | |
| else: | |
| html_output += "<div style='overflow-x: auto;'>\n" | |
| if isinstance(prompt_text, dict) and 'content' in prompt_text: | |
| # Escape HTML in content | |
| content = prompt_text['content'].replace('<', '<').replace('>', '>') | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{content}</code></pre>\n" | |
| else: | |
| # Escape HTML if prompt_text is a string | |
| if isinstance(prompt_text, str): | |
| prompt_text = prompt_text.replace('<', '<').replace('>', '>') | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n" | |
| html_output += "</div>\n" | |
| html_output += "</div>\n" | |
| html_output += "</details>\n\n" | |
| # Style prediction output - now in a collapsible section | |
| html_output += "<details open style='margin-bottom: 15px;'>\n" | |
| html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>" | |
| # Add word count in a muted style | |
| word_count = len(output['Prediction'].split()) | |
| html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>" | |
| html_output += "</summary>\n" | |
| html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" | |
| html_output += "<div style='overflow-x: auto;'>\n" | |
| # Escape HTML in prediction | |
| prediction = output['Prediction'].replace('<', '<').replace('>', '>') | |
| html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{prediction}</code></pre>\n" | |
| html_output += "</div>\n" | |
| html_output += "</div>\n" | |
| html_output += "</details>\n" | |
| html_output += "</div>\n\n" | |
| html_output += "</div>" | |
| return html_output | |
| # Get unique benchmarks | |
| available_benchmarks = list(set( | |
| benchmark | |
| for model in MODELS | |
| for benchmark in experiment_details[model].keys() | |
| )) | |
| # Update the Gradio interface to dynamically filter models based on benchmark | |
| def update_model_choices(benchmark): | |
| available_models = [model for model in MODELS if benchmark in experiment_details[model]] | |
| return gr.Dropdown(choices=sorted(available_models), value=sorted(available_models)) | |
| # Create the Gradio interface | |
| demo = gr.Interface( | |
| fn=display_model_comparison, | |
| inputs=[ | |
| gr.Dropdown( | |
| choices=sorted(MODELS), | |
| label="Models", | |
| multiselect=True, | |
| value=MODELS, | |
| info="Select models to compare" | |
| ), | |
| gr.Dropdown( | |
| choices=sorted(available_benchmarks), | |
| label="Benchmark", | |
| value=sorted(available_benchmarks)[0] if available_benchmarks else None, | |
| info="Choose the evaluation benchmark" | |
| ), | |
| gr.Number( | |
| label="Example Index", | |
| value=0, | |
| step=1, | |
| info="Navigate through different examples" | |
| ) | |
| ], | |
| outputs=gr.HTML(), | |
| title="Model Generation Comparison", | |
| description="Compare model outputs across different benchmarks and prompts", | |
| theme=gr.themes.Soft(), | |
| css="button { margin: 0 10px; padding: 5px 15px; }" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |