Spaces:
Build error
Build error
Upload TDTSR.py
Browse files
TDTSR.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
from transformers import DetrFeatureExtractor
|
| 4 |
+
from transformers import DetrForObjectDetection
|
| 5 |
+
import torch
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from matplotlib.patches import Circle, Wedge, Rectangle
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import math
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def table_detector(image, THRESHOLD_PROBA):
|
| 17 |
+
'''
|
| 18 |
+
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
| 19 |
+
|
| 20 |
+
'''
|
| 21 |
+
|
| 22 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
| 23 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
| 24 |
+
# encoding.keys()
|
| 25 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-detection")
|
| 26 |
+
# SalML\DETR-table-detection
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = model(**encoding)
|
| 29 |
+
|
| 30 |
+
# keep only predictions of queries with 0.9+ confidence (excluding no-object class)
|
| 31 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
| 32 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
| 33 |
+
|
| 34 |
+
# rescale bounding boxes
|
| 35 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 36 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 37 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
| 38 |
+
|
| 39 |
+
return (model, image, probas[keep], bboxes_scaled)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def table_struct_recog(image, THRESHOLD_PROBA):
|
| 43 |
+
'''
|
| 44 |
+
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
| 45 |
+
'''
|
| 46 |
+
|
| 47 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
| 48 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
| 49 |
+
|
| 50 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-structure-recognition")
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
outputs = model(**encoding)
|
| 53 |
+
|
| 54 |
+
# keep only predictions of queries with 0.9+ confidence (excluding no-object class)
|
| 55 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
| 56 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
| 57 |
+
|
| 58 |
+
# rescale bounding boxes
|
| 59 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 60 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 61 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
| 62 |
+
|
| 63 |
+
return (model, image, probas[keep], bboxes_scaled)
|
| 64 |
+
|
| 65 |
+
def add_margin(pil_img, top=20, right=20, bottom=20, left=20, color=(255,255,255)):
|
| 66 |
+
'''
|
| 67 |
+
Image padding as part of TSR pre-processing to prevent missing table edges
|
| 68 |
+
'''
|
| 69 |
+
width, height = pil_img.size
|
| 70 |
+
new_width = width + right + left
|
| 71 |
+
new_height = height + top + bottom
|
| 72 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
| 73 |
+
result.paste(pil_img, (left, top))
|
| 74 |
+
return result
|
| 75 |
+
|
| 76 |
+
def plot_results_detection(c1, model, pil_img, prob, boxes, show_only_cropped=False):
|
| 77 |
+
'''
|
| 78 |
+
Plots the full pillow pdf-page image and adds a rectangle patch for table detection
|
| 79 |
+
'''
|
| 80 |
+
|
| 81 |
+
plt.figure(figsize=(32,20))
|
| 82 |
+
plt.imshow(pil_img)
|
| 83 |
+
ax = plt.gca()
|
| 84 |
+
|
| 85 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 86 |
+
|
| 87 |
+
cl = p.argmax()
|
| 88 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
| 89 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
|
| 90 |
+
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
| 91 |
+
ax.text(xmin, ymin, text, fontsize=15,bbox=dict(facecolor='yellow', alpha=0.5))
|
| 92 |
+
plt.axis('off')
|
| 93 |
+
plt.show()
|
| 94 |
+
c1.pyplot()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def plot_table_detection(c2, model, pil_img, prob, boxes):
|
| 98 |
+
'''
|
| 99 |
+
Plots only the cropped table(s) from the table detection
|
| 100 |
+
'''
|
| 101 |
+
|
| 102 |
+
plt.figure(figsize=(32,20))
|
| 103 |
+
ax = plt.gca()
|
| 104 |
+
cropped_img_list = []
|
| 105 |
+
|
| 106 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 107 |
+
|
| 108 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
| 109 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 110 |
+
cropped_img_list.append(cropped_img)
|
| 111 |
+
|
| 112 |
+
for cropped_img in cropped_img_list:
|
| 113 |
+
plt.imshow(cropped_img)
|
| 114 |
+
|
| 115 |
+
plt.axis('off')
|
| 116 |
+
plt.show()
|
| 117 |
+
c2.pyplot()
|
| 118 |
+
return cropped_img_list
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def plot_structure(c3, model, pil_img, prob, boxes, class_to_show=0):
|
| 122 |
+
'''
|
| 123 |
+
To plot table pillow image and the TSR bounding boxes on the table
|
| 124 |
+
'''
|
| 125 |
+
plt.figure(figsize=(32,20))
|
| 126 |
+
plt.imshow(pil_img)
|
| 127 |
+
ax = plt.gca()
|
| 128 |
+
rows = {}
|
| 129 |
+
cols = {}
|
| 130 |
+
header = {}
|
| 131 |
+
row_header = {}
|
| 132 |
+
idx = 0
|
| 133 |
+
|
| 134 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 135 |
+
|
| 136 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
| 137 |
+
cl = p.argmax()
|
| 138 |
+
class_text = model.config.id2label[cl.item()]
|
| 139 |
+
text = f'{class_text}: {p[cl]:0.2f}'
|
| 140 |
+
# st.write(class_text)
|
| 141 |
+
if class_text != 'table':
|
| 142 |
+
|
| 143 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
|
| 144 |
+
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5))
|
| 145 |
+
|
| 146 |
+
# if class_text == 'table column header':
|
| 147 |
+
# header['header'] = (xmin, ymin, xmax, ymax)
|
| 148 |
+
if class_text == 'table row':
|
| 149 |
+
rows['table row '+str(idx)] = (xmin, ymin, xmax, ymax)
|
| 150 |
+
if class_text == 'table column':
|
| 151 |
+
cols['table column '+str(idx)] = (xmin, ymin, xmax, ymax)
|
| 152 |
+
# if class_text == 'table projected row header':
|
| 153 |
+
# row_header['header table row'+str(idx)] = (xmin, ymin, xmax, ymax)
|
| 154 |
+
|
| 155 |
+
idx += 1
|
| 156 |
+
|
| 157 |
+
plt.show()
|
| 158 |
+
c3.pyplot()
|
| 159 |
+
# return header, row_header, rows, cols
|
| 160 |
+
return rows, cols
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def sort_table_features(header, row_header, rows, cols):
|
| 165 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
| 166 |
+
y_header = header['header'][3] - 10
|
| 167 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) if ymin > y_header}
|
| 168 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
| 169 |
+
|
| 170 |
+
row_header_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(row_header.items(), key=lambda tup: tup[1][1])}
|
| 171 |
+
|
| 172 |
+
new_row = {}
|
| 173 |
+
idx = 0
|
| 174 |
+
|
| 175 |
+
for k1, v1 in rows_.items():
|
| 176 |
+
save_row = True
|
| 177 |
+
row_xmin, row_ymin, row_xmax, row_ymax = v1
|
| 178 |
+
for k2, v2 in row_header_.items():
|
| 179 |
+
header_row_xmin, header_row_ymin, header_row_xmax, header_row_ymax = v2
|
| 180 |
+
# table row and header table row are within 2 pixel range, skip saving the row
|
| 181 |
+
if math.isclose(row_ymin, header_row_ymin, abs_tol=2):
|
| 182 |
+
save_row = False
|
| 183 |
+
if save_row:
|
| 184 |
+
new_row['table row.'+str(idx)] = (row_xmin, row_ymin, row_xmax, row_ymax)
|
| 185 |
+
idx += 1
|
| 186 |
+
|
| 187 |
+
new_row_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(new_row.items(), key=lambda tup: tup[1][1])}
|
| 188 |
+
|
| 189 |
+
return row_header_, new_row_, cols_
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def sort_table_featuresv2(rows, cols):
|
| 193 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
| 194 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
|
| 195 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
| 196 |
+
|
| 197 |
+
return rows_, cols_
|
| 198 |
+
|
| 199 |
+
def individual_table_features(pil_img, header, row_header, rows, cols):
|
| 200 |
+
|
| 201 |
+
for k, v in header.items():
|
| 202 |
+
xmin, ymin, xmax, ymax = v
|
| 203 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 204 |
+
header[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 205 |
+
|
| 206 |
+
for k, v in row_header.items():
|
| 207 |
+
xmin, ymin, xmax, ymax = v
|
| 208 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 209 |
+
row_header[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 210 |
+
|
| 211 |
+
for k, v in rows.items():
|
| 212 |
+
xmin, ymin, xmax, ymax = v
|
| 213 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 214 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
for k, v in cols.items():
|
| 218 |
+
xmin, ymin, xmax, ymax = v
|
| 219 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 220 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 221 |
+
|
| 222 |
+
return header, row_header, rows, cols
|
| 223 |
+
|
| 224 |
+
def individual_table_featuresv2(pil_img, rows, cols):
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
for k, v in rows.items():
|
| 228 |
+
xmin, ymin, xmax, ymax = v
|
| 229 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 230 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
for k, v in cols.items():
|
| 234 |
+
xmin, ymin, xmax, ymax = v
|
| 235 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 236 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
| 237 |
+
|
| 238 |
+
return rows, cols
|
| 239 |
+
|
| 240 |
+
def plot_table_features(c2, header, row_header, rows, cols):
|
| 241 |
+
|
| 242 |
+
for k, v in header.items():
|
| 243 |
+
_, _, _, _, pil_img = v
|
| 244 |
+
|
| 245 |
+
for k, v in row_header.items():
|
| 246 |
+
_, _, _, _, pil_img = v
|
| 247 |
+
|
| 248 |
+
for k, v in rows.items():
|
| 249 |
+
_, _, _, _, pil_img = v
|
| 250 |
+
|
| 251 |
+
for k, v in cols.items():
|
| 252 |
+
_, _, _, _, pil_img = v
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def master_row_set(header, row_header, rows, cols):
|
| 256 |
+
master_row = {**header, **row_header, **rows}
|
| 257 |
+
master_row_ = {table_feature : (xmin, ymin, xmax, ymax, img) for table_feature, (xmin, ymin, xmax, ymax, img) in sorted(master_row.items(), key=lambda tup: tup[1][1])}
|
| 258 |
+
|
| 259 |
+
return master_row_
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def object_to_cells(master_row, cols):
|
| 265 |
+
'''
|
| 266 |
+
Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
|
| 267 |
+
'''
|
| 268 |
+
cells_img = {}
|
| 269 |
+
header_idx = 0
|
| 270 |
+
row_idx = 0
|
| 271 |
+
for k_row, v_row in master_row.items():
|
| 272 |
+
|
| 273 |
+
if k_row[:16] == 'header table row':
|
| 274 |
+
|
| 275 |
+
_, _, _, _, row_header_img = v_row
|
| 276 |
+
cells_img[k_row+'.'+str(row_idx)] = row_header_img
|
| 277 |
+
row_idx += 1
|
| 278 |
+
|
| 279 |
+
elif k_row == 'header':
|
| 280 |
+
|
| 281 |
+
_, ymin, _, ymax, header_img = v_row
|
| 282 |
+
|
| 283 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
| 284 |
+
for k_col, v_col in cols.items():
|
| 285 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
| 286 |
+
xa = xmin_col-19
|
| 287 |
+
xb = xmax_col-20
|
| 288 |
+
|
| 289 |
+
header_img_cropped = header_img.crop((xa, ya, xb, yb))
|
| 290 |
+
cells_img[k_row+'.'+str(header_idx)] = header_img_cropped
|
| 291 |
+
header_idx += 1
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
elif k_row[:9] == 'table row':
|
| 295 |
+
|
| 296 |
+
xmin, ymin, xmax, ymax, row_img = v_row
|
| 297 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
| 298 |
+
row_img_list = []
|
| 299 |
+
for k_col, v_col in cols.items():
|
| 300 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
| 301 |
+
xa = xmin_col-19
|
| 302 |
+
xb = xmax_col-20
|
| 303 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
| 304 |
+
row_img_list.append(row_img_cropped)
|
| 305 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
| 306 |
+
row_idx += 1
|
| 307 |
+
|
| 308 |
+
return cells_img
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def object_to_cellsv2(master_row, cols):
|
| 312 |
+
'''
|
| 313 |
+
Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
|
| 314 |
+
'''
|
| 315 |
+
cells_img = {}
|
| 316 |
+
header_idx = 0
|
| 317 |
+
row_idx = 0
|
| 318 |
+
for k_row, v_row in master_row.items():
|
| 319 |
+
|
| 320 |
+
xmin, ymin, xmax, ymax, row_img = v_row
|
| 321 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
| 322 |
+
row_img_list = []
|
| 323 |
+
for k_col, v_col in cols.items():
|
| 324 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
| 325 |
+
xa = xmin_col-19
|
| 326 |
+
xb = xmax_col-20
|
| 327 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
| 328 |
+
row_img_list.append(row_img_cropped)
|
| 329 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
| 330 |
+
row_idx += 1
|
| 331 |
+
|
| 332 |
+
return cells_img
|