Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,18 +3,19 @@ import matplotlib.pyplot as plt
|
|
| 3 |
import nltk
|
| 4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
-
from nltk.stem import WordNetLemmatizer
|
| 7 |
from nltk.text import Text
|
| 8 |
from nltk.probability import FreqDist
|
| 9 |
from cleantext import clean
|
| 10 |
-
import textract
|
|
|
|
| 11 |
import urllib.request
|
| 12 |
from io import BytesIO
|
| 13 |
import sys
|
| 14 |
import pandas as pd
|
| 15 |
-
import cv2
|
| 16 |
import re
|
| 17 |
-
from wordcloud import WordCloud, ImageColorGenerator
|
| 18 |
from textblob import TextBlob
|
| 19 |
from PIL import Image
|
| 20 |
import os
|
|
@@ -28,37 +29,14 @@ import unidecode
|
|
| 28 |
import contractions
|
| 29 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 30 |
|
| 31 |
-
|
| 32 |
load_dotenv()
|
| 33 |
-
import nltk
|
| 34 |
-
import ssl
|
| 35 |
-
|
| 36 |
-
def ensure_nltk_resources():
|
| 37 |
-
try:
|
| 38 |
-
nltk.data.find('tokenizers/punkt')
|
| 39 |
-
nltk.data.find('corpora/stopwords')
|
| 40 |
-
except LookupError:
|
| 41 |
-
print("NLTK resources not found. Downloading...")
|
| 42 |
-
try:
|
| 43 |
-
# Handling potential SSL issues (common on some systems)
|
| 44 |
-
_create_unverified_https_context = ssl._create_unverified_context
|
| 45 |
-
except AttributeError:
|
| 46 |
-
pass
|
| 47 |
-
else:
|
| 48 |
-
ssl._create_default_https_context = _create_unverified_https_context
|
| 49 |
-
|
| 50 |
-
nltk.download(['stopwords', 'wordnet', 'words'])
|
| 51 |
-
nltk.download('punkt')
|
| 52 |
-
nltk.download('punkt_tab')
|
| 53 |
-
print("NLTK resources downloaded successfully.")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
ensure_nltk_resources()
|
| 57 |
|
| 58 |
# Download NLTK resources (Ensure this runs once or handle caching)
|
| 59 |
# nltk.download(['stopwords', 'wordnet', 'words'])
|
| 60 |
# nltk.download('punkt')
|
| 61 |
# nltk.download('punkt_tab')
|
|
|
|
| 62 |
# Initialize Groq client
|
| 63 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 64 |
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
|
|
@@ -68,16 +46,36 @@ stop_words = set(stopwords.words('english'))
|
|
| 68 |
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
|
| 69 |
|
| 70 |
# --- Parsing & Preprocessing Functions ---
|
|
|
|
| 71 |
def Parsing(parsed_text):
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
|
|
|
| 73 |
if hasattr(parsed_text, 'name'):
|
| 74 |
file_path = parsed_text.name
|
| 75 |
else:
|
|
|
|
| 76 |
file_path = parsed_text
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
print(f"Error parsing PDF: {e}")
|
| 83 |
return f"Error parsing PDF: {e}"
|
|
@@ -104,8 +102,9 @@ def Preprocess(textParty):
|
|
| 104 |
def generate_summary(text):
|
| 105 |
if not groq_client:
|
| 106 |
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
|
| 107 |
-
|
| 108 |
-
|
|
|
|
| 109 |
try:
|
| 110 |
completion = groq_client.chat.completions.create(
|
| 111 |
model="llama3-8b-8192", # Or your preferred model
|
|
@@ -120,6 +119,61 @@ def generate_summary(text):
|
|
| 120 |
except Exception as e:
|
| 121 |
return f"Error generating summary: {str(e)}"
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
def fDistance(text2Party):
|
| 124 |
word_tokens_party = word_tokenize(text2Party)
|
| 125 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
|
@@ -162,7 +216,7 @@ def normalize(d, target=1.0):
|
|
| 162 |
return {key: value * factor for key, value in d.items()}
|
| 163 |
|
| 164 |
# --- Visualization Functions with Error Handling ---
|
| 165 |
-
|
| 166 |
def safe_plot(func, *args, **kwargs):
|
| 167 |
"""Executes a plotting function and returns the image, handling errors."""
|
| 168 |
buf = None # Initialize buffer
|
|
@@ -195,21 +249,19 @@ def safe_plot(func, *args, **kwargs):
|
|
| 195 |
plt.close('all') # Aggressive close on error
|
| 196 |
return None
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
def fDistancePlot(text2Party):
|
| 201 |
-
"""Generates the frequency distribution plot."""
|
| 202 |
def plot_func():
|
| 203 |
tokens = word_tokenize(text2Party)
|
| 204 |
if not tokens:
|
| 205 |
-
|
| 206 |
-
|
| 207 |
fdist = FreqDist(tokens)
|
| 208 |
fdist.plot(15, title='Frequency Distribution')
|
| 209 |
-
plt.xticks(rotation=45, ha='right')
|
| 210 |
plt.tight_layout()
|
| 211 |
return safe_plot(plot_func)
|
| 212 |
|
|
|
|
| 213 |
def DispersionPlot(textParty):
|
| 214 |
"""Generates the word dispersion plot."""
|
| 215 |
buf = None # Initialize buffer
|
|
@@ -232,7 +284,7 @@ def DispersionPlot(textParty):
|
|
| 232 |
print("Warning: No common words found for dispersion plot.")
|
| 233 |
return None
|
| 234 |
|
| 235 |
-
# ---
|
| 236 |
fig = plt.figure(figsize=(10, 5)) # Create figure explicitly
|
| 237 |
plt.title('Dispersion Plot')
|
| 238 |
# Call dispersion_plot without 'ax' argument
|
|
@@ -264,16 +316,17 @@ def DispersionPlot(textParty):
|
|
| 264 |
plt.close('all') # Aggressive close on error
|
| 265 |
return None # Return None on error
|
| 266 |
|
| 267 |
-
|
| 268 |
def word_cloud_generator(parsed_text_name, text_Party):
|
| 269 |
"""Generates the word cloud image."""
|
| 270 |
buf = None # Initialize buffer
|
| 271 |
try:
|
|
|
|
| 272 |
filename_lower = ""
|
| 273 |
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
|
| 274 |
filename_lower = parsed_text_name.name.lower()
|
| 275 |
elif isinstance(parsed_text_name, str):
|
| 276 |
-
|
| 277 |
|
| 278 |
mask_path = None
|
| 279 |
if 'bjp' in filename_lower:
|
|
@@ -283,16 +336,18 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
| 283 |
elif 'aap' in filename_lower:
|
| 284 |
mask_path = 'aapMain2.jpg'
|
| 285 |
|
|
|
|
| 286 |
if text_Party.strip() == "":
|
| 287 |
-
|
| 288 |
|
| 289 |
# Generate word cloud object
|
| 290 |
if mask_path and os.path.exists(mask_path):
|
| 291 |
orgImg = Image.open(mask_path)
|
|
|
|
| 292 |
if orgImg.mode != 'RGB':
|
| 293 |
orgImg = orgImg.convert('RGB')
|
| 294 |
mask = np.array(orgImg)
|
| 295 |
-
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white', mode='RGBA').generate(text_Party)
|
| 296 |
else:
|
| 297 |
wordcloud = WordCloud(max_words=2000, background_color='white', mode='RGBA').generate(text_Party)
|
| 298 |
|
|
@@ -305,13 +360,13 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
| 305 |
buf = BytesIO()
|
| 306 |
# Handle potential apply_aspect error for word cloud too
|
| 307 |
try:
|
| 308 |
-
fig.savefig(buf, format='png', bbox_inches='tight', dpi=
|
| 309 |
except AttributeError as ae:
|
| 310 |
if "apply_aspect" in str(ae):
|
| 311 |
print(f"Warning: bbox_inches='tight' failed for Word Cloud ({ae}), saving without it.")
|
| 312 |
buf.seek(0)
|
| 313 |
buf = BytesIO()
|
| 314 |
-
fig.savefig(buf, format='png', dpi=
|
| 315 |
else:
|
| 316 |
raise
|
| 317 |
buf.seek(0)
|
|
@@ -327,109 +382,23 @@ def word_cloud_generator(parsed_text_name, text_Party):
|
|
| 327 |
plt.close('all') # Aggressive close on error
|
| 328 |
return None # Return None on error
|
| 329 |
|
| 330 |
-
|
| 331 |
-
# Initial design for concordance based search
|
| 332 |
-
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
|
| 333 |
-
"""
|
| 334 |
-
Function to get all the phrases that contain the target word in a text/passage.
|
| 335 |
-
"""
|
| 336 |
-
if not target_word or target_word.strip() == "":
|
| 337 |
-
return "Please enter a search term"
|
| 338 |
-
tokens = nltk.word_tokenize(tar_passage)
|
| 339 |
-
text = nltk.Text(tokens)
|
| 340 |
-
c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
|
| 341 |
-
offsets = c.offsets(target_word)
|
| 342 |
-
if not offsets:
|
| 343 |
-
return f"Word '{target_word}' not found."
|
| 344 |
-
concordance_txt = [
|
| 345 |
-
text.tokens[max(0, offset - left_margin):offset + right_margin]
|
| 346 |
-
for offset in offsets[:numLins]
|
| 347 |
-
]
|
| 348 |
-
result = [' '.join(con_sub) for con_sub in concordance_txt]
|
| 349 |
-
return '\n'.join(result) # Use newline for better readability in textbox
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
|
| 353 |
-
"""
|
| 354 |
-
Uses the LLM to provide contextual information about the target word within the passage.
|
| 355 |
-
"""
|
| 356 |
-
if not target_word or target_word.strip() == "":
|
| 357 |
-
return "Please enter a search term."
|
| 358 |
-
|
| 359 |
-
if not groq_client_instance:
|
| 360 |
-
return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."
|
| 361 |
-
|
| 362 |
-
# Basic check if word exists (optional, LLM can handle it too)
|
| 363 |
-
# Simple check, might generate false positives/negatives
|
| 364 |
-
# if target_word.lower() not in tar_passage.lower():
|
| 365 |
-
# return f"The term '{target_word}' was not found in the manifesto text."
|
| 366 |
-
|
| 367 |
-
# Truncate passage if too long for the model/context window
|
| 368 |
-
original_length = len(tar_passage)
|
| 369 |
-
if original_length > max_context_length:
|
| 370 |
-
# Simple truncation; could be improved to ensure sentences are complete
|
| 371 |
-
tar_passage_truncated = tar_passage[:max_context_length]
|
| 372 |
-
print(f"Warning: Passage truncated for LLM search context from {original_length} to {max_context_length} characters.")
|
| 373 |
-
else:
|
| 374 |
-
tar_passage_truncated = tar_passage
|
| 375 |
-
|
| 376 |
-
# --- Improved Prompt ---
|
| 377 |
-
prompt = f"""
|
| 378 |
-
You are an expert political analyst. You have been given a section of a political manifesto and a specific search term.
|
| 379 |
-
Your task is to extract and summarize all information related to the search term from the provided text.
|
| 380 |
-
Focus on:
|
| 381 |
-
1. Specific policies, promises, or statements related to the term.
|
| 382 |
-
2. The context in which the term is used.
|
| 383 |
-
3. Any key details, figures, or commitments mentioned.
|
| 384 |
-
Present your findings concisely. If the term is not relevant or not found in the provided text section, state that clearly.
|
| 385 |
-
Search Term: {target_word}
|
| 386 |
-
Manifesto Text Section:
|
| 387 |
-
{tar_passage_truncated}
|
| 388 |
-
Relevant Information:
|
| 389 |
-
"""
|
| 390 |
-
|
| 391 |
-
try:
|
| 392 |
-
completion = groq_client_instance.chat.completions.create(
|
| 393 |
-
model="llama3-8b-8192", # Use the same or a suitable model
|
| 394 |
-
messages=[
|
| 395 |
-
{"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query. Provide clear, concise summaries."},
|
| 396 |
-
{"role": "user", "content": prompt}
|
| 397 |
-
],
|
| 398 |
-
temperature=0.2, # Low temperature for more factual extraction
|
| 399 |
-
max_tokens=1000 # Adjust based on expected output length
|
| 400 |
-
)
|
| 401 |
-
result = completion.choices[0].message.content.strip()
|
| 402 |
-
# Add a note if the input was truncated
|
| 403 |
-
if original_length > max_context_length:
|
| 404 |
-
result = f"(Note: Analysis based on the first {max_context_length} characters of the manifesto.)\n\n" + result
|
| 405 |
-
return result if result else f"No specific context for '{target_word}' could be generated from the provided text section."
|
| 406 |
-
except Exception as e:
|
| 407 |
-
error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
|
| 408 |
-
print(error_msg)
|
| 409 |
-
traceback.print_exc()
|
| 410 |
-
# Fallback to concordance if LLM fails?
|
| 411 |
-
# return get_all_phases_containing_tar_wrd(target_word, tar_passage)
|
| 412 |
-
return error_msg # Or return the error message directly
|
| 413 |
-
|
| 414 |
-
|
| 415 |
def analysis(Manifesto, Search):
|
| 416 |
try:
|
| 417 |
if Manifesto is None:
|
| 418 |
-
# Ensure return order matches the outputs list
|
| 419 |
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
|
| 420 |
if Search.strip() == "":
|
| 421 |
Search = "government"
|
| 422 |
-
raw_party = Parsing(Manifesto)
|
| 423 |
if isinstance(raw_party, str) and raw_party.startswith("Error"):
|
| 424 |
return raw_party, {}, None, None, None, None, None, "Parsing failed"
|
| 425 |
text_Party = clean_text(raw_party)
|
| 426 |
text_Party_processed = Preprocess(text_Party)
|
| 427 |
|
| 428 |
# --- Perform Search FIRST using the ORIGINAL text for better context ---
|
| 429 |
-
#
|
| 430 |
searChRes = get_contextual_search_result(Search, raw_party, groq_client)
|
| 431 |
|
| 432 |
-
# --- Then proceed with other analyses ---
|
| 433 |
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
|
| 434 |
|
| 435 |
# --- Sentiment Analysis ---
|
|
@@ -450,9 +419,10 @@ def analysis(Manifesto, Search):
|
|
| 450 |
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
|
| 451 |
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
|
| 452 |
freq_plot = fDistancePlot(text_Party_processed)
|
| 453 |
-
dispersion_plot = DispersionPlot(text_Party_processed) #
|
| 454 |
-
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself
|
| 455 |
fdist_Party = fDistance(text_Party_processed)
|
|
|
|
| 456 |
|
| 457 |
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
|
| 458 |
|
|
@@ -463,8 +433,8 @@ def analysis(Manifesto, Search):
|
|
| 463 |
# Return error messages/images in the correct order
|
| 464 |
return error_msg, {}, None, None, None, None, None, "Analysis failed"
|
| 465 |
|
| 466 |
-
|
| 467 |
-
#
|
| 468 |
with gr.Blocks(title='Manifesto Analysis') as demo:
|
| 469 |
gr.Markdown("# Manifesto Analysis")
|
| 470 |
# Input Section
|
|
@@ -481,9 +451,8 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
| 481 |
with gr.TabItem("Summary"):
|
| 482 |
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
|
| 483 |
|
| 484 |
-
# --- Search Results Tab ---
|
| 485 |
with gr.TabItem("Search Results"):
|
| 486 |
-
# Use the specific output variable defined in the layout
|
| 487 |
search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines
|
| 488 |
|
| 489 |
# --- Key Topics Tab ---
|
|
@@ -515,7 +484,7 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
| 515 |
fn=analysis,
|
| 516 |
inputs=[file_input, search_input],
|
| 517 |
outputs=[
|
| 518 |
-
search_output, # 1 (Now contextual)
|
| 519 |
topics_output, # 2
|
| 520 |
sentiment_output, # 3
|
| 521 |
subjectivity_output, # 4
|
|
@@ -528,7 +497,6 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
| 528 |
)
|
| 529 |
|
| 530 |
# --- Examples ---
|
| 531 |
-
# Ensure outputs list references the PREDEFINED components from the layout
|
| 532 |
gr.Examples(
|
| 533 |
examples=[
|
| 534 |
["Example/AAP_Manifesto_2019.pdf", "government"],
|
|
@@ -536,11 +504,10 @@ with gr.Blocks(title='Manifesto Analysis') as demo:
|
|
| 536 |
["Example/Congress_Manifesto_2019.pdf", "safety"]
|
| 537 |
],
|
| 538 |
inputs=[file_input, search_input],
|
| 539 |
-
|
| 540 |
-
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output],
|
| 541 |
fn=analysis # Run analysis on example click
|
| 542 |
)
|
| 543 |
|
| 544 |
-
|
| 545 |
if __name__ == "__main__":
|
| 546 |
-
demo.launch(debug=True, share=False, show_error=True)
|
|
|
|
| 3 |
import nltk
|
| 4 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
| 5 |
from nltk.corpus import stopwords
|
| 6 |
+
# from nltk.stem import WordNetLemmatizer # Not used, commented out
|
| 7 |
from nltk.text import Text
|
| 8 |
from nltk.probability import FreqDist
|
| 9 |
from cleantext import clean
|
| 10 |
+
# import textract # Replaced by PyPDF2
|
| 11 |
+
import PyPDF2 # Added for PDF parsing
|
| 12 |
import urllib.request
|
| 13 |
from io import BytesIO
|
| 14 |
import sys
|
| 15 |
import pandas as pd
|
| 16 |
+
# import cv2 # Not used, commented out
|
| 17 |
import re
|
| 18 |
+
from wordcloud import WordCloud # , ImageColorGenerator # ImageColorGenerator not used, commented out
|
| 19 |
from textblob import TextBlob
|
| 20 |
from PIL import Image
|
| 21 |
import os
|
|
|
|
| 29 |
import contractions
|
| 30 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 31 |
|
| 32 |
+
# Load environment variables
|
| 33 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Download NLTK resources (Ensure this runs once or handle caching)
|
| 36 |
# nltk.download(['stopwords', 'wordnet', 'words'])
|
| 37 |
# nltk.download('punkt')
|
| 38 |
# nltk.download('punkt_tab')
|
| 39 |
+
|
| 40 |
# Initialize Groq client
|
| 41 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 42 |
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
|
|
|
|
| 46 |
stop_words.update({'ask', 'much', 'thank', 'etc.', 'e', 'We', 'In', 'ed', 'pa', 'This', 'also', 'A', 'fu', 'To', '5', 'ing', 'er', '2'}) # Ensure stop_words is a set
|
| 47 |
|
| 48 |
# --- Parsing & Preprocessing Functions ---
|
| 49 |
+
# --- Replaced textract with PyPDF2 ---
|
| 50 |
def Parsing(parsed_text):
|
| 51 |
+
"""
|
| 52 |
+
Parses text from a PDF file using PyPDF2.
|
| 53 |
+
"""
|
| 54 |
try:
|
| 55 |
+
# Get the file path from the Gradio UploadFile object
|
| 56 |
if hasattr(parsed_text, 'name'):
|
| 57 |
file_path = parsed_text.name
|
| 58 |
else:
|
| 59 |
+
# Fallback if it's somehow just a string path
|
| 60 |
file_path = parsed_text
|
| 61 |
+
|
| 62 |
+
# Use PyPDF2 to read the PDF
|
| 63 |
+
text = ""
|
| 64 |
+
with open(file_path, 'rb') as pdf_file: # Open in binary read mode
|
| 65 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 66 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 67 |
+
page = pdf_reader.pages[page_num]
|
| 68 |
+
text += page.extract_text() + "\n" # Add newline between pages
|
| 69 |
+
|
| 70 |
+
# Clean the extracted text
|
| 71 |
+
return clean(text)
|
| 72 |
+
|
| 73 |
+
except FileNotFoundError:
|
| 74 |
+
print(f"Error parsing PDF: File not found at path: {file_path}")
|
| 75 |
+
return f"Error parsing PDF: File not found. Please check the file upload."
|
| 76 |
+
except PyPDF2.errors.PdfReadError as pre:
|
| 77 |
+
print(f"Error reading PDF: {pre}")
|
| 78 |
+
return f"Error reading PDF: The file might be corrupted or password-protected."
|
| 79 |
except Exception as e:
|
| 80 |
print(f"Error parsing PDF: {e}")
|
| 81 |
return f"Error parsing PDF: {e}"
|
|
|
|
| 102 |
def generate_summary(text):
|
| 103 |
if not groq_client:
|
| 104 |
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
|
| 105 |
+
# Adjusted truncation length for potentially better summary context
|
| 106 |
+
if len(text) > 15000:
|
| 107 |
+
text = text[:15000]
|
| 108 |
try:
|
| 109 |
completion = groq_client.chat.completions.create(
|
| 110 |
model="llama3-8b-8192", # Or your preferred model
|
|
|
|
| 119 |
except Exception as e:
|
| 120 |
return f"Error generating summary: {str(e)}"
|
| 121 |
|
| 122 |
+
# --- New LLM-based Search Function ---
|
| 123 |
+
def get_contextual_search_result(target_word, tar_passage, groq_client_instance, max_context_length=8000):
|
| 124 |
+
"""
|
| 125 |
+
Uses the LLM to provide contextual information about the target word within the passage.
|
| 126 |
+
"""
|
| 127 |
+
if not target_word or target_word.strip() == "":
|
| 128 |
+
return "Please enter a search term."
|
| 129 |
+
|
| 130 |
+
if not groq_client_instance:
|
| 131 |
+
return "Contextual search requires the LLM API. Please set up your GROQ_API_KEY."
|
| 132 |
+
|
| 133 |
+
# Truncate passage if too long for the model/context window
|
| 134 |
+
original_length = len(tar_passage)
|
| 135 |
+
if original_length > max_context_length:
|
| 136 |
+
tar_passage_truncated = tar_passage[:max_context_length]
|
| 137 |
+
print(f"Warning: Passage truncated for LLM search context from {original_length} to {max_context_length} characters.")
|
| 138 |
+
else:
|
| 139 |
+
tar_passage_truncated = tar_passage
|
| 140 |
+
|
| 141 |
+
# --- Improved Prompt ---
|
| 142 |
+
prompt = f"""
|
| 143 |
+
You are an expert political analyst. You have been given a section of a political manifesto and a specific search term.
|
| 144 |
+
Your task is to extract and summarize all information related to the search term from the provided text.
|
| 145 |
+
Focus on:
|
| 146 |
+
1. Specific policies, promises, or statements related to the term.
|
| 147 |
+
2. The context in which the term is used.
|
| 148 |
+
3. Any key details, figures, or commitments mentioned.
|
| 149 |
+
Present your findings concisely. If the term is not relevant or not found in the provided text section, state that clearly.
|
| 150 |
+
Search Term: {target_word}
|
| 151 |
+
Manifesto Text Section:
|
| 152 |
+
{tar_passage_truncated}
|
| 153 |
+
Relevant Information:
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
completion = groq_client_instance.chat.completions.create(
|
| 158 |
+
model="llama3-8b-8192", # Use the same or a suitable model
|
| 159 |
+
messages=[
|
| 160 |
+
{"role": "system", "content": "You are a helpful assistant skilled at analyzing political texts and extracting relevant information based on a search query. Provide clear, concise summaries."},
|
| 161 |
+
{"role": "user", "content": prompt}
|
| 162 |
+
],
|
| 163 |
+
temperature=0.2, # Low temperature for more factual extraction
|
| 164 |
+
max_tokens=1000 # Adjust based on expected output length
|
| 165 |
+
)
|
| 166 |
+
result = completion.choices[0].message.content.strip()
|
| 167 |
+
# Add a note if the input was truncated
|
| 168 |
+
if original_length > max_context_length:
|
| 169 |
+
result = f"(Note: Analysis based on the first {max_context_length} characters of the manifesto.)\n\n" + result
|
| 170 |
+
return result if result else f"No specific context for '{target_word}' could be generated from the provided text section."
|
| 171 |
+
except Exception as e:
|
| 172 |
+
error_msg = f"Error during contextual search for '{target_word}': {str(e)}"
|
| 173 |
+
print(error_msg)
|
| 174 |
+
traceback.print_exc()
|
| 175 |
+
return error_msg # Or return the error message directly
|
| 176 |
+
|
| 177 |
def fDistance(text2Party):
|
| 178 |
word_tokens_party = word_tokenize(text2Party)
|
| 179 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
|
|
|
| 216 |
return {key: value * factor for key, value in d.items()}
|
| 217 |
|
| 218 |
# --- Visualization Functions with Error Handling ---
|
| 219 |
+
# --- Improved safe_plot to handle apply_aspect errors ---
|
| 220 |
def safe_plot(func, *args, **kwargs):
|
| 221 |
"""Executes a plotting function and returns the image, handling errors."""
|
| 222 |
buf = None # Initialize buffer
|
|
|
|
| 249 |
plt.close('all') # Aggressive close on error
|
| 250 |
return None
|
| 251 |
|
|
|
|
|
|
|
| 252 |
def fDistancePlot(text2Party):
|
|
|
|
| 253 |
def plot_func():
|
| 254 |
tokens = word_tokenize(text2Party)
|
| 255 |
if not tokens:
|
| 256 |
+
plt.text(0.5, 0.5, "No data to plot", ha='center', va='center')
|
| 257 |
+
return
|
| 258 |
fdist = FreqDist(tokens)
|
| 259 |
fdist.plot(15, title='Frequency Distribution')
|
| 260 |
+
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels if needed
|
| 261 |
plt.tight_layout()
|
| 262 |
return safe_plot(plot_func)
|
| 263 |
|
| 264 |
+
# --- Updated DispersionPlot without passing 'ax' ---
|
| 265 |
def DispersionPlot(textParty):
|
| 266 |
"""Generates the word dispersion plot."""
|
| 267 |
buf = None # Initialize buffer
|
|
|
|
| 284 |
print("Warning: No common words found for dispersion plot.")
|
| 285 |
return None
|
| 286 |
|
| 287 |
+
# --- Manage figure explicitly without passing 'ax' ---
|
| 288 |
fig = plt.figure(figsize=(10, 5)) # Create figure explicitly
|
| 289 |
plt.title('Dispersion Plot')
|
| 290 |
# Call dispersion_plot without 'ax' argument
|
|
|
|
| 316 |
plt.close('all') # Aggressive close on error
|
| 317 |
return None # Return None on error
|
| 318 |
|
| 319 |
+
# --- Updated word_cloud_generator with robust figure handling ---
|
| 320 |
def word_cloud_generator(parsed_text_name, text_Party):
|
| 321 |
"""Generates the word cloud image."""
|
| 322 |
buf = None # Initialize buffer
|
| 323 |
try:
|
| 324 |
+
# Handle case where parsed_text_name might not have .name
|
| 325 |
filename_lower = ""
|
| 326 |
if hasattr(parsed_text_name, 'name') and parsed_text_name.name:
|
| 327 |
filename_lower = parsed_text_name.name.lower()
|
| 328 |
elif isinstance(parsed_text_name, str):
|
| 329 |
+
filename_lower = parsed_text_name.lower()
|
| 330 |
|
| 331 |
mask_path = None
|
| 332 |
if 'bjp' in filename_lower:
|
|
|
|
| 336 |
elif 'aap' in filename_lower:
|
| 337 |
mask_path = 'aapMain2.jpg'
|
| 338 |
|
| 339 |
+
# Generate word cloud
|
| 340 |
if text_Party.strip() == "":
|
| 341 |
+
raise ValueError("Text for word cloud is empty")
|
| 342 |
|
| 343 |
# Generate word cloud object
|
| 344 |
if mask_path and os.path.exists(mask_path):
|
| 345 |
orgImg = Image.open(mask_path)
|
| 346 |
+
# Ensure mask is in the right format (e.g., uint8)
|
| 347 |
if orgImg.mode != 'RGB':
|
| 348 |
orgImg = orgImg.convert('RGB')
|
| 349 |
mask = np.array(orgImg)
|
| 350 |
+
wordcloud = WordCloud(max_words=3000, mask=mask, background_color='white', mode='RGBA').generate(text_Party) # Added mode='RGBA'
|
| 351 |
else:
|
| 352 |
wordcloud = WordCloud(max_words=2000, background_color='white', mode='RGBA').generate(text_Party)
|
| 353 |
|
|
|
|
| 360 |
buf = BytesIO()
|
| 361 |
# Handle potential apply_aspect error for word cloud too
|
| 362 |
try:
|
| 363 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150, facecolor='white') # Added dpi and facecolor
|
| 364 |
except AttributeError as ae:
|
| 365 |
if "apply_aspect" in str(ae):
|
| 366 |
print(f"Warning: bbox_inches='tight' failed for Word Cloud ({ae}), saving without it.")
|
| 367 |
buf.seek(0)
|
| 368 |
buf = BytesIO()
|
| 369 |
+
fig.savefig(buf, format='png', dpi=150, facecolor='white')
|
| 370 |
else:
|
| 371 |
raise
|
| 372 |
buf.seek(0)
|
|
|
|
| 382 |
plt.close('all') # Aggressive close on error
|
| 383 |
return None # Return None on error
|
| 384 |
|
| 385 |
+
# --- Main Analysis Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
def analysis(Manifesto, Search):
|
| 387 |
try:
|
| 388 |
if Manifesto is None:
|
|
|
|
| 389 |
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
|
| 390 |
if Search.strip() == "":
|
| 391 |
Search = "government"
|
| 392 |
+
raw_party = Parsing(Manifesto) # Uses PyPDF2 now
|
| 393 |
if isinstance(raw_party, str) and raw_party.startswith("Error"):
|
| 394 |
return raw_party, {}, None, None, None, None, None, "Parsing failed"
|
| 395 |
text_Party = clean_text(raw_party)
|
| 396 |
text_Party_processed = Preprocess(text_Party)
|
| 397 |
|
| 398 |
# --- Perform Search FIRST using the ORIGINAL text for better context ---
|
| 399 |
+
# Use the new LLM-based search function
|
| 400 |
searChRes = get_contextual_search_result(Search, raw_party, groq_client)
|
| 401 |
|
|
|
|
| 402 |
summary = generate_summary(raw_party) # Use raw_party for summary for more context?
|
| 403 |
|
| 404 |
# --- Sentiment Analysis ---
|
|
|
|
| 419 |
sentiment_plot = safe_plot(lambda: df_dummy['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
|
| 420 |
subjectivity_plot = safe_plot(lambda: df_dummy['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
|
| 421 |
freq_plot = fDistancePlot(text_Party_processed)
|
| 422 |
+
dispersion_plot = DispersionPlot(text_Party_processed) # Uses updated version
|
| 423 |
+
wordcloud = word_cloud_generator(Manifesto, text_Party_processed) # Pass Manifesto object itself, uses updated version
|
| 424 |
fdist_Party = fDistance(text_Party_processed)
|
| 425 |
+
# searChRes is now generated earlier using LLM
|
| 426 |
|
| 427 |
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
|
| 428 |
|
|
|
|
| 433 |
# Return error messages/images in the correct order
|
| 434 |
return error_msg, {}, None, None, None, None, None, "Analysis failed"
|
| 435 |
|
| 436 |
+
# --- Gradio Interface ---
|
| 437 |
+
# Use Blocks for custom layout
|
| 438 |
with gr.Blocks(title='Manifesto Analysis') as demo:
|
| 439 |
gr.Markdown("# Manifesto Analysis")
|
| 440 |
# Input Section
|
|
|
|
| 451 |
with gr.TabItem("Summary"):
|
| 452 |
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10, interactive=False)
|
| 453 |
|
| 454 |
+
# --- Search Results Tab (uses LLM output now) ---
|
| 455 |
with gr.TabItem("Search Results"):
|
|
|
|
| 456 |
search_output = gr.Textbox(label='Context Based Search Results', lines=15, interactive=False, max_lines=20) # Increased lines/max_lines
|
| 457 |
|
| 458 |
# --- Key Topics Tab ---
|
|
|
|
| 484 |
fn=analysis,
|
| 485 |
inputs=[file_input, search_input],
|
| 486 |
outputs=[
|
| 487 |
+
search_output, # 1 (Now contextual LLM output)
|
| 488 |
topics_output, # 2
|
| 489 |
sentiment_output, # 3
|
| 490 |
subjectivity_output, # 4
|
|
|
|
| 497 |
)
|
| 498 |
|
| 499 |
# --- Examples ---
|
|
|
|
| 500 |
gr.Examples(
|
| 501 |
examples=[
|
| 502 |
["Example/AAP_Manifesto_2019.pdf", "government"],
|
|
|
|
| 504 |
["Example/Congress_Manifesto_2019.pdf", "safety"]
|
| 505 |
],
|
| 506 |
inputs=[file_input, search_input],
|
| 507 |
+
outputs=[search_output, topics_output, sentiment_output, subjectivity_output, wordcloud_output, freq_output, dispersion_output, summary_output], # Link examples to outputs
|
|
|
|
| 508 |
fn=analysis # Run analysis on example click
|
| 509 |
)
|
| 510 |
|
| 511 |
+
# Launch the app
|
| 512 |
if __name__ == "__main__":
|
| 513 |
+
demo.launch(debug=True, share=False, show_error=True)
|