Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""trial _final yr proj.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1AGAk7En1Rd0RuEju4MzMxSCUVnGq73Es
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
"""# MANIFESTO ANALYSIS
|
| 13 |
+
|
| 14 |
+
## IMPORTING LIBRARIES
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 18 |
+
# %%capture
|
| 19 |
+
# !pip install tika
|
| 20 |
+
# !pip install clean-text
|
| 21 |
+
# !pip install gradio
|
| 22 |
+
|
| 23 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 24 |
+
|
| 25 |
+
import io
|
| 26 |
+
import random
|
| 27 |
+
import matplotlib.pyplot as plt
|
| 28 |
+
import nltk
|
| 29 |
+
from nltk.tokenize import word_tokenize,sent_tokenize
|
| 30 |
+
from nltk.corpus import stopwords
|
| 31 |
+
from nltk.stem.porter import PorterStemmer
|
| 32 |
+
from nltk.stem import WordNetLemmatizer
|
| 33 |
+
from tika import parser
|
| 34 |
+
from nltk.corpus import stopwords
|
| 35 |
+
from nltk.tokenize import word_tokenize
|
| 36 |
+
from nltk.probability import FreqDist
|
| 37 |
+
from cleantext import clean
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
import nltk.corpus
|
| 41 |
+
from nltk.text import Text
|
| 42 |
+
from io import StringIO
|
| 43 |
+
import sys
|
| 44 |
+
|
| 45 |
+
import re
|
| 46 |
+
|
| 47 |
+
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
|
| 48 |
+
from textblob import TextBlob
|
| 49 |
+
from PIL import Image
|
| 50 |
+
|
| 51 |
+
import gradio as gr
|
| 52 |
+
from zipfile import ZipFile
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
nltk.download('stopwords')
|
| 56 |
+
nltk.download('punkt')
|
| 57 |
+
nltk.download('wordnet')
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
"""## PARSING FILES"""
|
| 63 |
+
|
| 64 |
+
def Parsing(parsed_text):
|
| 65 |
+
parsed_text=parsed_text.name
|
| 66 |
+
raw_party =parser.from_file(parsed_text)
|
| 67 |
+
# parser.parse1(option='all',urlOrPath=parsed_text)
|
| 68 |
+
# from_buffer(parsed_text)
|
| 69 |
+
# from_file(parsed_text)
|
| 70 |
+
raw_party = raw_party['content']
|
| 71 |
+
return clean(raw_party)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
#Added more stopwords to avoid irrelevant terms
|
| 76 |
+
stop_words = set(stopwords.words('english'))
|
| 77 |
+
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
|
| 78 |
+
|
| 79 |
+
"""## PREPROCESSING"""
|
| 80 |
+
|
| 81 |
+
def clean_text(text):
|
| 82 |
+
'''
|
| 83 |
+
Function which returns clean text
|
| 84 |
+
'''
|
| 85 |
+
text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters
|
| 86 |
+
text = re.sub(r"\n", " ", text)
|
| 87 |
+
text = re.sub(r"\n\n", " ", text)
|
| 88 |
+
text = re.sub(r"\t", " ", text)
|
| 89 |
+
text = re.sub(r"/ ", " ", text)
|
| 90 |
+
text = text.strip(" ")
|
| 91 |
+
text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single
|
| 92 |
+
|
| 93 |
+
text = [word for word in text.split() if word not in STOPWORDS]
|
| 94 |
+
text = ' '.join(text)
|
| 95 |
+
return text
|
| 96 |
+
|
| 97 |
+
# text_Party=clean_text(raw_party)
|
| 98 |
+
|
| 99 |
+
def Preprocess(textParty):
|
| 100 |
+
'''
|
| 101 |
+
Removing special characters extra spaces
|
| 102 |
+
'''
|
| 103 |
+
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
|
| 104 |
+
#Removing all stop words
|
| 105 |
+
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
|
| 106 |
+
text2Party = pattern.sub('', text1Party)
|
| 107 |
+
# fdist_cong = FreqDist(word_tokens_cong)
|
| 108 |
+
return text2Party
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Using Concordance,you can see each time a word is used, along with its
|
| 115 |
+
# immediate context. It can give you a peek into how a word is being used
|
| 116 |
+
# at the sentence level and what words are used with it.
|
| 117 |
+
|
| 118 |
+
def concordance(text_Party,strng):
|
| 119 |
+
word_tokens_party = word_tokenize(text_Party)
|
| 120 |
+
moby = Text(word_tokens_party)
|
| 121 |
+
resultList = []
|
| 122 |
+
for i in range(0,1):
|
| 123 |
+
save_stdout = sys.stdout
|
| 124 |
+
result = StringIO()
|
| 125 |
+
sys.stdout = result
|
| 126 |
+
moby.concordance(strng,lines=10,width=82)
|
| 127 |
+
sys.stdout = save_stdout
|
| 128 |
+
s=result.getvalue().splitlines()
|
| 129 |
+
return result.getvalue()
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def normalize(d, target=1.0):
|
| 133 |
+
raw = sum(d.values())
|
| 134 |
+
factor = target/raw
|
| 135 |
+
return {key:value*factor for key,value in d.items()}
|
| 136 |
+
|
| 137 |
+
def fDistance(text2Party):
|
| 138 |
+
'''
|
| 139 |
+
most frequent words search
|
| 140 |
+
'''
|
| 141 |
+
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 142 |
+
fdistance = FreqDist(word_tokens_party).most_common(10)
|
| 143 |
+
mem={}
|
| 144 |
+
for x in fdistance:
|
| 145 |
+
mem[x[0]]=x[1]
|
| 146 |
+
return normalize(mem)
|
| 147 |
+
|
| 148 |
+
def fDistancePlot(text2Party,plotN=20):
|
| 149 |
+
'''
|
| 150 |
+
most frequent words visualisation
|
| 151 |
+
'''
|
| 152 |
+
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 153 |
+
fdistance = FreqDist(word_tokens_party)
|
| 154 |
+
return fdistance.plot(20)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
## UI INTERFACE
|
| 159 |
+
|
| 160 |
+
def analysis(Manifesto,Search):
|
| 161 |
+
raw_party = Parsing(Manifesto)
|
| 162 |
+
text_Party=clean_text(raw_party)
|
| 163 |
+
text_Party= Preprocess(text_Party)
|
| 164 |
+
fdist_Party=fDistance(text_Party)
|
| 165 |
+
searchRes=concordance(text_Party,Search)
|
| 166 |
+
searChRes=clean(searchRes)
|
| 167 |
+
# searChRes=searchRes.replace(Search,f"\u0332{Search}\u0332 ")
|
| 168 |
+
searChRes=searchRes.replace(Search,"\u0332".join(Search))
|
| 169 |
+
return fdist_Party,searChRes
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
Search_txt=gr.inputs.Textbox()
|
| 173 |
+
filePdf = gr.inputs.File()
|
| 174 |
+
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
|
| 175 |
+
mfw=gr.outputs.Label(label="Most Relevant topics in manifesto")
|
| 176 |
+
|
| 177 |
+
gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[mfw,text], title='Manifesto Analysis').launch(debug=False,share=True)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|