Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
# MANIFESTO ANALYSIS
|
| 3 |
"""
|
|
@@ -32,6 +445,14 @@ import gradio as gr
|
|
| 32 |
from zipfile import ZipFile
|
| 33 |
import contractions
|
| 34 |
import unidecode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
nltk.download('punkt_tab')
|
| 37 |
nltk.download('stopwords')
|
|
@@ -39,6 +460,18 @@ nltk.download('punkt')
|
|
| 39 |
nltk.download('wordnet')
|
| 40 |
nltk.download('words')
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
"""## PARSING FILES"""
|
| 44 |
|
|
@@ -149,16 +582,77 @@ def normalize(d, target=1.0):
|
|
| 149 |
factor = target/raw
|
| 150 |
return {key:value*factor for key,value in d.items()}
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def fDistance(text2Party):
|
| 153 |
'''
|
| 154 |
-
Most frequent words search
|
| 155 |
'''
|
|
|
|
| 156 |
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 157 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
| 158 |
mem={}
|
| 159 |
for x in fdistance:
|
| 160 |
mem[x[0]]=x[1]
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def fDistancePlot(text2Party,plotN=15):
|
| 164 |
'''
|
|
@@ -352,7 +846,10 @@ urllib.request.urlretrieve(url, filename=path_input)
|
|
| 352 |
def analysis(Manifesto,Search):
|
| 353 |
raw_party = Parsing(Manifesto)
|
| 354 |
text_Party=clean_text(raw_party)
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
|
| 358 |
df['Subjectivity'] = df['Content'].apply(getSubjectivity)
|
|
@@ -380,30 +877,81 @@ def analysis(Manifesto,Search):
|
|
| 380 |
img2 = Image.open(buf)
|
| 381 |
plt.clf()
|
| 382 |
|
| 383 |
-
img3 = word_cloud_generator(Manifesto.name,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
-
|
| 386 |
-
img4=fDistancePlot(text_Party)
|
| 387 |
-
img5=DispersionPlot(text_Party)
|
| 388 |
-
#concordance(text_Party,Search)
|
| 389 |
-
searChRes=get_all_phases_containing_tar_wrd(Search,text_Party)
|
| 390 |
searChRes=searChRes.replace(Search,"\u0332".join(Search))
|
| 391 |
plt.close('all')
|
| 392 |
-
return searChRes,fdist_Party,img1,img2,img3,img4,img5
|
| 393 |
|
| 394 |
|
| 395 |
Search_txt= "text"
|
| 396 |
filePdf = "file"
|
| 397 |
text = gr.Textbox(label='Context Based Search')
|
| 398 |
-
mfw=gr.Label(label="Most Relevant Topics")
|
| 399 |
plot1=gr.Image(label='Sentiment Analysis')
|
| 400 |
plot2=gr.Image(label='Subjectivity Analysis')
|
| 401 |
plot3=gr.Image(label='Word Cloud')
|
| 402 |
plot4=gr.Image(label='Frequency Distribution')
|
| 403 |
plot5=gr.Image(label='Dispersion Plot')
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
|
| 408 |
|
| 409 |
#allow_screenshot=False,allow_flagging="never",
|
|
|
|
| 1 |
+
# """
|
| 2 |
+
# # MANIFESTO ANALYSIS
|
| 3 |
+
# """
|
| 4 |
+
|
| 5 |
+
# ##IMPORTING LIBRARIES
|
| 6 |
+
# import random
|
| 7 |
+
# import matplotlib.pyplot as plt
|
| 8 |
+
# import nltk
|
| 9 |
+
# from nltk.tokenize import word_tokenize,sent_tokenize
|
| 10 |
+
# from nltk.corpus import stopwords
|
| 11 |
+
# from nltk.stem.porter import PorterStemmer
|
| 12 |
+
# from nltk.stem import WordNetLemmatizer
|
| 13 |
+
# from nltk.corpus import stopwords
|
| 14 |
+
# from nltk.tokenize import word_tokenize
|
| 15 |
+
# from nltk.probability import FreqDist
|
| 16 |
+
# from cleantext import clean
|
| 17 |
+
# import textract
|
| 18 |
+
# import urllib.request
|
| 19 |
+
# import nltk.corpus
|
| 20 |
+
# from nltk.text import Text
|
| 21 |
+
# import io
|
| 22 |
+
# from io import StringIO,BytesIO
|
| 23 |
+
# import sys
|
| 24 |
+
# import pandas as pd
|
| 25 |
+
# import cv2
|
| 26 |
+
# import re
|
| 27 |
+
# from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
|
| 28 |
+
# from textblob import TextBlob
|
| 29 |
+
# from PIL import Image
|
| 30 |
+
# import os
|
| 31 |
+
# import gradio as gr
|
| 32 |
+
# from zipfile import ZipFile
|
| 33 |
+
# import contractions
|
| 34 |
+
# import unidecode
|
| 35 |
+
|
| 36 |
+
# nltk.download('punkt_tab')
|
| 37 |
+
# nltk.download('stopwords')
|
| 38 |
+
# nltk.download('punkt')
|
| 39 |
+
# nltk.download('wordnet')
|
| 40 |
+
# nltk.download('words')
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# """## PARSING FILES"""
|
| 44 |
+
|
| 45 |
+
# #def Parsing(parsed_text):
|
| 46 |
+
# #parsed_text=parsed_text.name
|
| 47 |
+
# #raw_party =parser.from_file(parsed_text)
|
| 48 |
+
# # raw_party = raw_party['content'],cache_examples=True
|
| 49 |
+
# # return clean(raw_party)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# def Parsing(parsed_text):
|
| 53 |
+
# parsed_text=parsed_text.name
|
| 54 |
+
# raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer')
|
| 55 |
+
# return clean(raw_party)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# #Added more stopwords to avoid irrelevant terms
|
| 59 |
+
# stop_words = set(stopwords.words('english'))
|
| 60 |
+
# stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
|
| 61 |
+
|
| 62 |
+
# """## PREPROCESSING"""
|
| 63 |
+
|
| 64 |
+
# def clean_text(text):
|
| 65 |
+
# '''
|
| 66 |
+
# The function which returns clean text
|
| 67 |
+
# '''
|
| 68 |
+
# text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters
|
| 69 |
+
# text=unidecode.unidecode(text)# diacritics remove
|
| 70 |
+
# text=contractions.fix(text) # contraction fix
|
| 71 |
+
# text = re.sub(r"\n", " ", text)
|
| 72 |
+
# text = re.sub(r"\n\n", " ", text)
|
| 73 |
+
# text = re.sub(r"\t", " ", text)
|
| 74 |
+
# text = re.sub(r"/ ", " ", text)
|
| 75 |
+
# text = text.strip(" ")
|
| 76 |
+
# text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single
|
| 77 |
+
|
| 78 |
+
# text = [word for word in text.split() if word not in stop_words]
|
| 79 |
+
# text = ' '.join(text)
|
| 80 |
+
# return text
|
| 81 |
+
|
| 82 |
+
# # text_Party=clean_text(raw_party)
|
| 83 |
+
|
| 84 |
+
# def Preprocess(textParty):
|
| 85 |
+
# '''
|
| 86 |
+
# Removing special characters extra spaces
|
| 87 |
+
# '''
|
| 88 |
+
# text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
|
| 89 |
+
# #Removing all stop words
|
| 90 |
+
# pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
|
| 91 |
+
# text2Party = pattern.sub('', text1Party)
|
| 92 |
+
# # fdist_cong = FreqDist(word_tokens_cong)
|
| 93 |
+
# return text2Party
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# '''
|
| 100 |
+
# Using Concordance, you can see each time a word is used, along with its
|
| 101 |
+
# immediate context. It can give you a peek into how a word is being used
|
| 102 |
+
# at the sentence level and what words are used with it
|
| 103 |
+
# '''
|
| 104 |
+
# def conc(text_Party,strng):
|
| 105 |
+
# word_tokens_party = word_tokenize(text_Party)
|
| 106 |
+
# moby = Text(word_tokens_party)
|
| 107 |
+
# resultList = []
|
| 108 |
+
# for i in range(0,1):
|
| 109 |
+
# save_stdout = sys.stdout
|
| 110 |
+
# result = StringIO()
|
| 111 |
+
# sys.stdout = result
|
| 112 |
+
# moby.concordance(strng,lines=4,width=82)
|
| 113 |
+
# sys.stdout = save_stdout
|
| 114 |
+
# s=result.getvalue().splitlines()
|
| 115 |
+
# return result.getvalue()
|
| 116 |
+
|
| 117 |
+
# def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin = 10, right_margin = 10,numLins=4):
|
| 118 |
+
# """
|
| 119 |
+
# Function to get all the phases that contain the target word in a text/passage tar_passage.
|
| 120 |
+
# Workaround to save the output given by nltk Concordance function
|
| 121 |
+
|
| 122 |
+
# str target_word, str tar_passage int left_margin int right_margin --> list of str
|
| 123 |
+
# left_margin and right_margin allocate the number of words/pununciation before and after target word
|
| 124 |
+
# Left margin will take note of the beginning of the text
|
| 125 |
+
# """
|
| 126 |
+
# ## Create list of tokens using nltk function
|
| 127 |
+
# tokens = nltk.word_tokenize(tar_passage)
|
| 128 |
+
|
| 129 |
+
# ## Create the text of tokens
|
| 130 |
+
# text = nltk.Text(tokens)
|
| 131 |
+
|
| 132 |
+
# ## Collect all the index or offset position of the target word
|
| 133 |
+
# c = nltk.ConcordanceIndex(text.tokens, key = lambda s: s.lower())
|
| 134 |
+
|
| 135 |
+
# ## Collect the range of the words that is within the target word by using text.tokens[start;end].
|
| 136 |
+
# ## The map function is use so that when the offset position - the target range < 0, it will be default to zero
|
| 137 |
+
# concordance_txt = ([text.tokens[list(map(lambda x: x-5 if (x-left_margin)>0 else 0,[offset]))[0]:offset+right_margin] for offset in c.offsets(target_word)])
|
| 138 |
+
|
| 139 |
+
# ## join the sentences for each of the target phrase and return it
|
| 140 |
+
# result = [''.join([x.replace("Y","")+' ' for x in con_sub]) for con_sub in concordance_txt][:-1]
|
| 141 |
+
# result=result[:numLins+1]
|
| 142 |
+
|
| 143 |
+
# res='\n\n'.join(result)
|
| 144 |
+
# return res
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# def normalize(d, target=1.0):
|
| 148 |
+
# raw = sum(d.values())
|
| 149 |
+
# factor = target/raw
|
| 150 |
+
# return {key:value*factor for key,value in d.items()}
|
| 151 |
+
|
| 152 |
+
# def fDistance(text2Party):
|
| 153 |
+
# '''
|
| 154 |
+
# Most frequent words search
|
| 155 |
+
# '''
|
| 156 |
+
# word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 157 |
+
# fdistance = FreqDist(word_tokens_party).most_common(10)
|
| 158 |
+
# mem={}
|
| 159 |
+
# for x in fdistance:
|
| 160 |
+
# mem[x[0]]=x[1]
|
| 161 |
+
# return normalize(mem)
|
| 162 |
+
|
| 163 |
+
# def fDistancePlot(text2Party,plotN=15):
|
| 164 |
+
# '''
|
| 165 |
+
# Most Frequent Words Visualization
|
| 166 |
+
# '''
|
| 167 |
+
# word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 168 |
+
# fdistance = FreqDist(word_tokens_party)
|
| 169 |
+
# plt.title('Frequency Distribution')
|
| 170 |
+
# plt.axis('off')
|
| 171 |
+
# plt.figure(figsize=(4,3))
|
| 172 |
+
# fdistance.plot(plotN)
|
| 173 |
+
# plt.tight_layout()
|
| 174 |
+
# buf = BytesIO()
|
| 175 |
+
# plt.savefig(buf)
|
| 176 |
+
# buf.seek(0)
|
| 177 |
+
# img1 = Image.open(buf)
|
| 178 |
+
# plt.clf()
|
| 179 |
+
# return img1
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# def DispersionPlot(textParty):
|
| 183 |
+
# '''
|
| 184 |
+
# Dispersion PLot
|
| 185 |
+
# '''
|
| 186 |
+
# word_tokens_party = word_tokenize(textParty) #Tokenizing
|
| 187 |
+
# moby = Text(word_tokens_party)
|
| 188 |
+
# fdistance = FreqDist(word_tokens_party)
|
| 189 |
+
# word_Lst=[]
|
| 190 |
+
# for x in range(5):
|
| 191 |
+
# word_Lst.append(fdistance.most_common(6)[x][0])
|
| 192 |
+
|
| 193 |
+
# plt.axis('off')
|
| 194 |
+
# plt.figure(figsize=(4,3))
|
| 195 |
+
# plt.title('Dispersion Plot')
|
| 196 |
+
# moby.dispersion_plot(word_Lst)
|
| 197 |
+
# plt.plot(color="#EF6D6D")
|
| 198 |
+
# plt.tight_layout()
|
| 199 |
+
# buf = BytesIO()
|
| 200 |
+
# plt.savefig(buf)
|
| 201 |
+
# buf.seek(0)
|
| 202 |
+
# img = Image.open(buf)
|
| 203 |
+
# plt.clf()
|
| 204 |
+
# return img
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# def getSubjectivity(text):
|
| 208 |
+
|
| 209 |
+
# '''
|
| 210 |
+
# Create a function to get the polarity
|
| 211 |
+
# '''
|
| 212 |
+
# return TextBlob(text).sentiment.subjectivity
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# def getPolarity(text):
|
| 216 |
+
# '''
|
| 217 |
+
# Create a function to get the polarity
|
| 218 |
+
# '''
|
| 219 |
+
# return TextBlob(text).sentiment.polarity
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# def getAnalysis(score):
|
| 223 |
+
# if score < 0:
|
| 224 |
+
# return 'Negative'
|
| 225 |
+
# elif score == 0:
|
| 226 |
+
# return 'Neutral'
|
| 227 |
+
# else:
|
| 228 |
+
# return 'Positive'
|
| 229 |
+
# def Original_Image(path):
|
| 230 |
+
# img= cv2.imread(path)
|
| 231 |
+
# img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 232 |
+
# return img
|
| 233 |
+
|
| 234 |
+
# def Image_Processed(path):
|
| 235 |
+
# '''
|
| 236 |
+
# Reading the image file
|
| 237 |
+
# '''
|
| 238 |
+
# img= cv2.imread(path)
|
| 239 |
+
# img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 240 |
+
|
| 241 |
+
# #Thresholding
|
| 242 |
+
# ret, bw_img = cv2.threshold(img, 124, 255, cv2.THRESH_BINARY)
|
| 243 |
+
|
| 244 |
+
# return bw_img
|
| 245 |
+
|
| 246 |
+
# def word_cloud(orgIm,mask_img,text_Party_pr,maxWord=2000,colorGener=True,
|
| 247 |
+
# contCol='white',bckColor='white'):
|
| 248 |
+
# '''
|
| 249 |
+
# #Generating word cloud
|
| 250 |
+
# '''
|
| 251 |
+
# mask =mask_img
|
| 252 |
+
# # Create and generate a word cloud image:
|
| 253 |
+
# wordcloud = WordCloud(max_words=maxWord, background_color=bckColor,
|
| 254 |
+
# mask=mask,
|
| 255 |
+
# colormap='nipy_spectral_r',
|
| 256 |
+
# contour_color=contCol,
|
| 257 |
+
# width=800, height=800,
|
| 258 |
+
# margin=2,
|
| 259 |
+
# contour_width=3).generate(text_Party_pr)
|
| 260 |
+
|
| 261 |
+
# # create coloring from image
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# plt.axis("off")
|
| 265 |
+
# if colorGener==True:
|
| 266 |
+
# image_colors = ImageColorGenerator(orgIm)
|
| 267 |
+
# plt.imshow(wordcloud.recolor(color_func= image_colors),interpolation="bilinear")
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
# else:
|
| 271 |
+
# plt.imshow(wordcloud)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# def word_cloud_generator(parsed_text_name,text_Party):
|
| 277 |
+
# parsed=parsed_text_name.lower()
|
| 278 |
+
|
| 279 |
+
# if 'bjp' in parsed:
|
| 280 |
+
# orgImg=Original_Image('bjpImg2.jpeg')
|
| 281 |
+
# bwImg=Image_Processed('bjpImg2.jpeg')
|
| 282 |
+
# plt.figure(figsize=(6,5))
|
| 283 |
+
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True,
|
| 284 |
+
# contCol='white', bckColor='black')
|
| 285 |
+
# plt.tight_layout()
|
| 286 |
+
# buf = BytesIO()
|
| 287 |
+
# plt.savefig(buf)
|
| 288 |
+
# buf.seek(0)
|
| 289 |
+
# img1 = Image.open(buf)
|
| 290 |
+
# plt.clf()
|
| 291 |
+
# return img1
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# elif 'congress' in parsed:
|
| 295 |
+
# orgImg=Original_Image('congress3.jpeg')
|
| 296 |
+
# bwImg=Image_Processed('congress3.jpeg')
|
| 297 |
+
# plt.figure(figsize=(5,4))
|
| 298 |
+
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True)
|
| 299 |
+
|
| 300 |
+
# plt.tight_layout()
|
| 301 |
+
# buf = BytesIO()
|
| 302 |
+
# plt.savefig(buf)
|
| 303 |
+
# buf.seek(0)
|
| 304 |
+
# img2 = Image.open(buf)
|
| 305 |
+
# plt.clf()
|
| 306 |
+
# return img2
|
| 307 |
+
# #congrsMain.jpg
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# elif 'aap' in parsed:
|
| 311 |
+
# orgImg=Original_Image('aapMain2.jpg')
|
| 312 |
+
# bwImg=Image_Processed('aapMain2.jpg')
|
| 313 |
+
# plt.figure(figsize=(5,4))
|
| 314 |
+
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=False,contCol='black')
|
| 315 |
+
|
| 316 |
+
# plt.tight_layout()
|
| 317 |
+
# buf = BytesIO()
|
| 318 |
+
# plt.savefig(buf)
|
| 319 |
+
# buf.seek(0)
|
| 320 |
+
# img3 = Image.open(buf)
|
| 321 |
+
# plt.clf()
|
| 322 |
+
# return img3
|
| 323 |
+
|
| 324 |
+
# else :
|
| 325 |
+
# wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
|
| 326 |
+
# plt.figure(figsize=(5,5))
|
| 327 |
+
# plt.imshow(wordcloud, interpolation="bilinear")
|
| 328 |
+
# plt.axis("off")
|
| 329 |
+
# plt.tight_layout()
|
| 330 |
+
# buf = BytesIO()
|
| 331 |
+
# plt.savefig(buf)
|
| 332 |
+
# buf.seek(0)
|
| 333 |
+
# img4 = Image.open(buf)
|
| 334 |
+
# plt.clf()
|
| 335 |
+
# return img4
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# '''
|
| 340 |
+
# url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
|
| 341 |
+
# path_input = "./Bjp_Manifesto_2019.pdf"
|
| 342 |
+
# urllib.request.urlretrieve(url, filename=path_input)
|
| 343 |
+
|
| 344 |
+
# url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
|
| 345 |
+
# path_input = "./Aap_Manifesto_2019.pdf"
|
| 346 |
+
# urllib.request.urlretrieve(url, filename=path_input)
|
| 347 |
+
|
| 348 |
+
# url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download"
|
| 349 |
+
# path_input = "./Congress_Manifesto_2019.pdf"
|
| 350 |
+
# urllib.request.urlretrieve(url, filename=path_input)
|
| 351 |
+
# '''
|
| 352 |
+
# def analysis(Manifesto,Search):
|
| 353 |
+
# raw_party = Parsing(Manifesto)
|
| 354 |
+
# text_Party=clean_text(raw_party)
|
| 355 |
+
# text_Party= Preprocess(text_Party)
|
| 356 |
+
|
| 357 |
+
# df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
|
| 358 |
+
# df['Subjectivity'] = df['Content'].apply(getSubjectivity)
|
| 359 |
+
# df['Polarity'] = df['Content'].apply(getPolarity)
|
| 360 |
+
# df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
|
| 361 |
+
# df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
|
| 362 |
+
# plt.title('Sentiment Analysis')
|
| 363 |
+
# plt.xlabel('Sentiment')
|
| 364 |
+
# plt.ylabel('Counts')
|
| 365 |
+
# plt.figure(figsize=(4,3))
|
| 366 |
+
# df['Analysis on Polarity'].value_counts().plot(kind ='bar',color="#FF9F45")
|
| 367 |
+
# plt.tight_layout()
|
| 368 |
+
# buf = BytesIO()
|
| 369 |
+
# plt.savefig(buf)
|
| 370 |
+
# buf.seek(0)
|
| 371 |
+
# img1 = Image.open(buf)
|
| 372 |
+
# plt.clf()
|
| 373 |
+
|
| 374 |
+
# plt.figure(figsize=(4,3))
|
| 375 |
+
# df['Analysis on Subjectivity'].value_counts().plot(kind ='bar',color="#B667F1")
|
| 376 |
+
# plt.tight_layout()
|
| 377 |
+
# buf = BytesIO()
|
| 378 |
+
# plt.savefig(buf)
|
| 379 |
+
# buf.seek(0)
|
| 380 |
+
# img2 = Image.open(buf)
|
| 381 |
+
# plt.clf()
|
| 382 |
+
|
| 383 |
+
# img3 = word_cloud_generator(Manifesto.name,text_Party)
|
| 384 |
+
|
| 385 |
+
# fdist_Party=fDistance(text_Party)
|
| 386 |
+
# img4=fDistancePlot(text_Party)
|
| 387 |
+
# img5=DispersionPlot(text_Party)
|
| 388 |
+
# #concordance(text_Party,Search)
|
| 389 |
+
# searChRes=get_all_phases_containing_tar_wrd(Search,text_Party)
|
| 390 |
+
# searChRes=searChRes.replace(Search,"\u0332".join(Search))
|
| 391 |
+
# plt.close('all')
|
| 392 |
+
# return searChRes,fdist_Party,img1,img2,img3,img4,img5
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
# Search_txt= "text"
|
| 396 |
+
# filePdf = "file"
|
| 397 |
+
# text = gr.Textbox(label='Context Based Search')
|
| 398 |
+
# mfw=gr.Label(label="Most Relevant Topics")
|
| 399 |
+
# plot1=gr.Image(label='Sentiment Analysis')
|
| 400 |
+
# plot2=gr.Image(label='Subjectivity Analysis')
|
| 401 |
+
# plot3=gr.Image(label='Word Cloud')
|
| 402 |
+
# plot4=gr.Image(label='Frequency Distribution')
|
| 403 |
+
# plot5=gr.Image(label='Dispersion Plot')
|
| 404 |
+
|
| 405 |
+
# io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4,plot5], title='Manifesto Analysis',examples=[['Example/AAP_Manifesto_2019.pdf','government'],['Example/Bjp_Manifesto_2019.pdf','environment'],['Example/Congress_Manifesto_2019.pdf','safety']],theme='peach')
|
| 406 |
+
# io.launch(debug=True,share=False)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
# #allow_screenshot=False,allow_flagging="never",
|
| 410 |
+
# #examples=[['manifestos/Bjp_Manifesto_2019.pdf','modi'],['AAP_Manifesto_2019.pdf','delhi'],['manifestos/Congress_Manifesto_2019.pdf','safety']])
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
"""
|
| 415 |
# MANIFESTO ANALYSIS
|
| 416 |
"""
|
|
|
|
| 445 |
from zipfile import ZipFile
|
| 446 |
import contractions
|
| 447 |
import unidecode
|
| 448 |
+
import groq
|
| 449 |
+
import json
|
| 450 |
+
from dotenv import load_dotenv
|
| 451 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 452 |
+
from collections import Counter
|
| 453 |
+
|
| 454 |
+
# Load environment variables from .env file
|
| 455 |
+
load_dotenv()
|
| 456 |
|
| 457 |
nltk.download('punkt_tab')
|
| 458 |
nltk.download('stopwords')
|
|
|
|
| 460 |
nltk.download('wordnet')
|
| 461 |
nltk.download('words')
|
| 462 |
|
| 463 |
+
# Initialize Groq client for LLM capabilities
|
| 464 |
+
try:
|
| 465 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 466 |
+
if groq_api_key:
|
| 467 |
+
groq_client = groq.Groq(api_key=groq_api_key)
|
| 468 |
+
else:
|
| 469 |
+
print("Warning: GROQ_API_KEY not found in environment variables. Summarization will be disabled.")
|
| 470 |
+
groq_client = None
|
| 471 |
+
except Exception as e:
|
| 472 |
+
print(f"Error initializing Groq client: {e}")
|
| 473 |
+
groq_client = None
|
| 474 |
+
|
| 475 |
|
| 476 |
"""## PARSING FILES"""
|
| 477 |
|
|
|
|
| 582 |
factor = target/raw
|
| 583 |
return {key:value*factor for key,value in d.items()}
|
| 584 |
|
| 585 |
+
|
| 586 |
+
def generate_summary(text, max_length=1000):
|
| 587 |
+
"""
|
| 588 |
+
Generate a summary of the manifesto text using Groq LLM
|
| 589 |
+
"""
|
| 590 |
+
if not groq_client:
|
| 591 |
+
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
|
| 592 |
+
|
| 593 |
+
# Truncate text if it's too long to fit in context window
|
| 594 |
+
if len(text) > 10000:
|
| 595 |
+
text = text[:10000]
|
| 596 |
+
|
| 597 |
+
try:
|
| 598 |
+
# Use Groq's LLaMA 3 model for summarization
|
| 599 |
+
completion = groq_client.chat.completions.create(
|
| 600 |
+
model="llama3-8b-8192", # Using LLaMA 3 8B model
|
| 601 |
+
messages=[
|
| 602 |
+
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
|
| 603 |
+
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
|
| 604 |
+
],
|
| 605 |
+
temperature=0.3, # Lower temperature for more focused output
|
| 606 |
+
max_tokens=800, # Limit response length
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
return completion.choices[0].message.content
|
| 610 |
+
except Exception as e:
|
| 611 |
+
return f"Error generating summary: {str(e)}. Please check your API key and connection."
|
| 612 |
+
|
| 613 |
def fDistance(text2Party):
|
| 614 |
'''
|
| 615 |
+
Most frequent words search using TF-IDF to find more relevant words
|
| 616 |
'''
|
| 617 |
+
# Traditional frequency distribution
|
| 618 |
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
| 619 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
| 620 |
mem={}
|
| 621 |
for x in fdistance:
|
| 622 |
mem[x[0]]=x[1]
|
| 623 |
+
|
| 624 |
+
# Enhanced with TF-IDF for better relevance
|
| 625 |
+
sentences = sent_tokenize(text2Party)
|
| 626 |
+
|
| 627 |
+
# Use TF-IDF to find more relevant words
|
| 628 |
+
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
|
| 629 |
+
tfidf_matrix = vectorizer.fit_transform(sentences)
|
| 630 |
+
|
| 631 |
+
# Get feature names (words)
|
| 632 |
+
feature_names = vectorizer.get_feature_names_out()
|
| 633 |
+
|
| 634 |
+
# Calculate average TF-IDF score for each word across all sentences
|
| 635 |
+
tfidf_scores = {}
|
| 636 |
+
for i, word in enumerate(feature_names):
|
| 637 |
+
scores = [tfidf_matrix[j, i] for j in range(len(sentences)) if i < tfidf_matrix[j].shape[1]]
|
| 638 |
+
if scores:
|
| 639 |
+
tfidf_scores[word] = sum(scores) / len(scores)
|
| 640 |
+
|
| 641 |
+
# Sort by score and get top words
|
| 642 |
+
sorted_tfidf = dict(sorted(tfidf_scores.items(), key=lambda x: x[1], reverse=True)[:10])
|
| 643 |
+
|
| 644 |
+
# Combine traditional frequency with TF-IDF for better results
|
| 645 |
+
combined_scores = {}
|
| 646 |
+
for word in set(list(mem.keys()) + list(sorted_tfidf.keys())):
|
| 647 |
+
# Normalize and combine both scores (with more weight to TF-IDF)
|
| 648 |
+
freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
|
| 649 |
+
tfidf_score = sorted_tfidf.get(word, 0) / max(sorted_tfidf.values()) if sorted_tfidf else 0
|
| 650 |
+
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7) # Weight TF-IDF higher
|
| 651 |
+
|
| 652 |
+
# Get top 10 words by combined score
|
| 653 |
+
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
|
| 654 |
+
|
| 655 |
+
return normalize(top_words)
|
| 656 |
|
| 657 |
def fDistancePlot(text2Party,plotN=15):
|
| 658 |
'''
|
|
|
|
| 846 |
def analysis(Manifesto,Search):
|
| 847 |
raw_party = Parsing(Manifesto)
|
| 848 |
text_Party=clean_text(raw_party)
|
| 849 |
+
text_Party_processed = Preprocess(text_Party)
|
| 850 |
+
|
| 851 |
+
# Generate summary using LLM
|
| 852 |
+
summary = generate_summary(raw_party)
|
| 853 |
|
| 854 |
df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
|
| 855 |
df['Subjectivity'] = df['Content'].apply(getSubjectivity)
|
|
|
|
| 877 |
img2 = Image.open(buf)
|
| 878 |
plt.clf()
|
| 879 |
|
| 880 |
+
img3 = word_cloud_generator(Manifesto.name,text_Party_processed)
|
| 881 |
+
|
| 882 |
+
fdist_Party=fDistance(text_Party_processed)
|
| 883 |
+
img4=fDistancePlot(text_Party_processed)
|
| 884 |
+
img5=DispersionPlot(text_Party_processed)
|
| 885 |
|
| 886 |
+
searChRes=get_all_phases_containing_tar_wrd(Search,text_Party_processed)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 887 |
searChRes=searChRes.replace(Search,"\u0332".join(Search))
|
| 888 |
plt.close('all')
|
| 889 |
+
return searChRes,fdist_Party,img1,img2,img3,img4,img5,summary
|
| 890 |
|
| 891 |
|
| 892 |
Search_txt= "text"
|
| 893 |
filePdf = "file"
|
| 894 |
text = gr.Textbox(label='Context Based Search')
|
| 895 |
+
mfw=gr.Label(label="Most Relevant Topics (LLM Enhanced)")
|
| 896 |
plot1=gr.Image(label='Sentiment Analysis')
|
| 897 |
plot2=gr.Image(label='Subjectivity Analysis')
|
| 898 |
plot3=gr.Image(label='Word Cloud')
|
| 899 |
plot4=gr.Image(label='Frequency Distribution')
|
| 900 |
plot5=gr.Image(label='Dispersion Plot')
|
| 901 |
+
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10)
|
| 902 |
|
| 903 |
+
with gr.Blocks(title='Manifesto Analysis', theme='peach') as demo:
|
| 904 |
+
gr.Markdown("# Manifesto Analysis with LLM Enhancement")
|
| 905 |
+
gr.Markdown("### Analyze political manifestos with advanced NLP and LLM techniques")
|
| 906 |
+
|
| 907 |
+
with gr.Row():
|
| 908 |
+
with gr.Column(scale=1):
|
| 909 |
+
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
|
| 910 |
+
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
|
| 911 |
+
submit_btn = gr.Button("Analyze Manifesto")
|
| 912 |
+
|
| 913 |
+
with gr.Tabs():
|
| 914 |
+
with gr.TabItem("Summary"):
|
| 915 |
+
summary_output
|
| 916 |
+
|
| 917 |
+
with gr.TabItem("Search Results"):
|
| 918 |
+
text
|
| 919 |
+
|
| 920 |
+
with gr.TabItem("Key Topics"):
|
| 921 |
+
mfw
|
| 922 |
+
|
| 923 |
+
with gr.TabItem("Visualizations"):
|
| 924 |
+
with gr.Row():
|
| 925 |
+
with gr.Column(scale=1):
|
| 926 |
+
plot3
|
| 927 |
+
with gr.Column(scale=1):
|
| 928 |
+
plot4
|
| 929 |
+
|
| 930 |
+
with gr.Row():
|
| 931 |
+
with gr.Column(scale=1):
|
| 932 |
+
plot1
|
| 933 |
+
with gr.Column(scale=1):
|
| 934 |
+
plot2
|
| 935 |
+
|
| 936 |
+
with gr.Row():
|
| 937 |
+
plot5
|
| 938 |
+
|
| 939 |
+
submit_btn.click(
|
| 940 |
+
fn=analysis,
|
| 941 |
+
inputs=[file_input, search_input],
|
| 942 |
+
outputs=[text, mfw, plot1, plot2, plot3, plot4, plot5, summary_output]
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
gr.Examples(
|
| 946 |
+
examples=[
|
| 947 |
+
['Example/AAP_Manifesto_2019.pdf', 'government'],
|
| 948 |
+
['Example/Bjp_Manifesto_2019.pdf', 'environment'],
|
| 949 |
+
['Example/Congress_Manifesto_2019.pdf', 'safety']
|
| 950 |
+
],
|
| 951 |
+
inputs=[file_input, search_input]
|
| 952 |
+
)
|
| 953 |
+
|
| 954 |
+
demo.launch(debug=True, share=False)
|
| 955 |
|
| 956 |
|
| 957 |
#allow_screenshot=False,allow_flagging="never",
|