import json import os import time from datetime import datetime, timezone, timedelta from collections import defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.errors import HfHubHTTPError from dotenv import load_dotenv import duckdb import backoff import requests import requests.exceptions from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.triggers.cron import CronTrigger import logging import traceback import subprocess import re # Load environment variables load_dotenv() # ============================================================================= # CONFIGURATION # ============================================================================= AGENTS_REPO = "SWE-Arena/bot_data" AGENTS_REPO_LOCAL_PATH = os.path.expanduser("~/bot_data") # Local git clone path DUCKDB_CACHE_FILE = "cache.duckdb" GHARCHIVE_DATA_LOCAL_PATH = os.path.expanduser("~/gharchive/data") LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json" LEADERBOARD_REPO = "SWE-Arena/leaderboard_data" LEADERBOARD_TIME_FRAME_DAYS = 180 # Git sync configuration (mandatory to get latest bot data) GIT_SYNC_TIMEOUT = 300 # 5 minutes timeout for git pull # OPTIMIZED DUCKDB CONFIGURATION DUCKDB_THREADS = 8 DUCKDB_MEMORY_LIMIT = "64GB" # Streaming batch configuration BATCH_SIZE_DAYS = 7 # Process 1 week at a time (~168 hourly files) # At this size: ~7 days × 24 files × ~100MB per file = ~16GB uncompressed per batch # Download configuration DOWNLOAD_WORKERS = 4 DOWNLOAD_RETRY_DELAY = 2 MAX_RETRIES = 5 # Upload configuration UPLOAD_DELAY_SECONDS = 5 UPLOAD_INITIAL_BACKOFF = 60 UPLOAD_MAX_BACKOFF = 3600 # Scheduler configuration SCHEDULE_ENABLED = True SCHEDULE_DAY_OF_WEEK = 'wed' # Wednesday SCHEDULE_HOUR = 0 SCHEDULE_MINUTE = 0 SCHEDULE_TIMEZONE = 'UTC' # ============================================================================= # UTILITY FUNCTIONS # ============================================================================= def load_jsonl(filename): """Load JSONL file and return list of dictionaries.""" if not os.path.exists(filename): return [] data = [] with open(filename, 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line: try: data.append(json.loads(line)) except json.JSONDecodeError as e: print(f"Warning: Skipping invalid JSON line: {e}") return data def save_jsonl(filename, data): """Save list of dictionaries to JSONL file.""" with open(filename, 'w', encoding='utf-8') as f: for item in data: f.write(json.dumps(item) + '\n') def normalize_date_format(date_string): """Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix.""" if not date_string or date_string == 'N/A': return 'N/A' try: if isinstance(date_string, datetime): return date_string.strftime('%Y-%m-%dT%H:%M:%SZ') date_string = re.sub(r'\s+', ' ', date_string.strip()) date_string = date_string.replace(' ', 'T') if len(date_string) >= 3: if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]: date_string = date_string + ':00' dt = datetime.fromisoformat(date_string.replace('Z', '+00:00')) return dt.strftime('%Y-%m-%dT%H:%M:%SZ') except Exception as e: print(f"Warning: Could not parse date '{date_string}': {e}") return date_string def get_hf_token(): """Get HuggingFace token from environment variables.""" token = os.getenv('HF_TOKEN') if not token: print("Warning: HF_TOKEN not found in environment variables") return token # ============================================================================= # GHARCHIVE DOWNLOAD FUNCTIONS # ============================================================================= def download_file(url): """Download a GHArchive file with retry logic.""" filename = url.split("/")[-1] filepath = os.path.join(GHARCHIVE_DATA_LOCAL_PATH, filename) if os.path.exists(filepath): return True for attempt in range(MAX_RETRIES): try: response = requests.get(url, timeout=30) response.raise_for_status() with open(filepath, "wb") as f: f.write(response.content) return True except requests.exceptions.HTTPError as e: # 404 means the file doesn't exist in GHArchive - skip without retry if e.response.status_code == 404: if attempt == 0: # Only log once, not for each retry print(f" ⚠ {filename}: Not available (404) - skipping") return False # Other HTTP errors (5xx, etc.) should be retried wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt) print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})") time.sleep(wait_time) except Exception as e: # Network errors, timeouts, etc. should be retried wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt) print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})") time.sleep(wait_time) return False def download_all_gharchive_data(): """Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS.""" os.makedirs(GHARCHIVE_DATA_LOCAL_PATH, exist_ok=True) end_date = datetime.now(timezone.utc) start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS) urls = [] current_date = start_date while current_date <= end_date: date_str = current_date.strftime("%Y-%m-%d") for hour in range(24): url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz" urls.append(url) current_date += timedelta(days=1) downloads_processed = 0 try: with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor: futures = [executor.submit(download_file, url) for url in urls] for future in as_completed(futures): downloads_processed += 1 print(f" Download complete: {downloads_processed} files") return True except Exception as e: print(f"Error during download: {str(e)}") traceback.print_exc() return False # ============================================================================= # HUGGINGFACE API WRAPPERS # ============================================================================= def is_retryable_error(e): """Check if exception is retryable (rate limit or timeout error).""" if isinstance(e, HfHubHTTPError): if e.response.status_code == 429: return True if isinstance(e, (requests.exceptions.Timeout, requests.exceptions.ReadTimeout, requests.exceptions.ConnectTimeout)): return True if isinstance(e, Exception): error_str = str(e).lower() if 'timeout' in error_str or 'timed out' in error_str: return True return False @backoff.on_exception( backoff.expo, (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception), max_tries=MAX_RETRIES, base=300, max_value=3600, giveup=lambda e: not is_retryable_error(e), on_backoff=lambda details: print( f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..." ) ) def list_repo_files_with_backoff(api, **kwargs): """Wrapper for api.list_repo_files() with exponential backoff.""" return api.list_repo_files(**kwargs) @backoff.on_exception( backoff.expo, (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception), max_tries=MAX_RETRIES, base=300, max_value=3600, giveup=lambda e: not is_retryable_error(e), on_backoff=lambda details: print( f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..." ) ) def hf_hub_download_with_backoff(**kwargs): """Wrapper for hf_hub_download() with exponential backoff.""" return hf_hub_download(**kwargs) @backoff.on_exception( backoff.expo, (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception), max_tries=MAX_RETRIES, base=300, max_value=3600, giveup=lambda e: not is_retryable_error(e), on_backoff=lambda details: print( f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..." ) ) def upload_file_with_backoff(api, **kwargs): """Wrapper for api.upload_file() with exponential backoff.""" return api.upload_file(**kwargs) @backoff.on_exception( backoff.expo, (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception), max_tries=MAX_RETRIES, base=300, max_value=3600, giveup=lambda e: not is_retryable_error(e), on_backoff=lambda details: print( f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..." ) ) def upload_folder_with_backoff(api, **kwargs): """Wrapper for api.upload_folder() with exponential backoff.""" return api.upload_folder(**kwargs) def get_duckdb_connection(): """ Initialize DuckDB connection with OPTIMIZED memory settings. Uses persistent database and reduced memory footprint. Automatically removes cache file if lock conflict is detected. """ try: conn = duckdb.connect(DUCKDB_CACHE_FILE) except Exception as e: # Check if it's a locking error error_msg = str(e) if "lock" in error_msg.lower() or "conflicting" in error_msg.lower(): print(f" ⚠ Lock conflict detected, removing {DUCKDB_CACHE_FILE}...") if os.path.exists(DUCKDB_CACHE_FILE): os.remove(DUCKDB_CACHE_FILE) print(f" ✓ Cache file removed, retrying connection...") # Retry connection after removing cache conn = duckdb.connect(DUCKDB_CACHE_FILE) else: # Re-raise if it's not a locking error raise # OPTIMIZED SETTINGS conn.execute(f"SET threads TO {DUCKDB_THREADS};") conn.execute("SET preserve_insertion_order = false;") conn.execute("SET enable_object_cache = true;") conn.execute("SET temp_directory = '/tmp/duckdb_temp';") conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';") # Per-query limit conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';") # Hard cap return conn def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_LOCAL_PATH): """Generate file path patterns for GHArchive data in date range (only existing files).""" file_patterns = [] missing_dates = set() current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0) end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0) while current_date <= end_day: date_has_files = False for hour in range(24): pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz") if os.path.exists(pattern): file_patterns.append(pattern) date_has_files = True if not date_has_files: missing_dates.add(current_date.strftime('%Y-%m-%d')) current_date += timedelta(days=1) if missing_dates: print(f" ⚠ Skipping {len(missing_dates)} date(s) with no data") return file_patterns # ============================================================================= # STREAMING BATCH PROCESSING FOR REVIEW METADATA # ============================================================================= def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date): """ OPTIMIZED: Fetch review metadata using streaming batch processing. Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage. Instead of loading 180 days (4,344 files) at once, processes 7 days at a time. This prevents OOM errors by: 1. Only keeping ~168 hourly files in memory per batch (vs 4,344) 2. Incrementally building the results dictionary 3. Allowing DuckDB to garbage collect after each batch Args: conn: DuckDB connection instance identifiers: List of GitHub usernames/bot identifiers start_date: Start datetime (timezone-aware) end_date: End datetime (timezone-aware) Returns: Dictionary mapping agent identifier to list of review metadata """ identifier_list = ', '.join([f"'{id}'" for id in identifiers]) metadata_by_agent = defaultdict(list) # Calculate total batches total_days = (end_date - start_date).days total_batches = (total_days // BATCH_SIZE_DAYS) + 1 # Process in configurable batches current_date = start_date batch_num = 0 total_reviews = 0 print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...") while current_date <= end_date: batch_num += 1 batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date) # Get file patterns for THIS BATCH ONLY file_patterns = generate_file_path_patterns(current_date, batch_end) if not file_patterns: print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA") current_date = batch_end + timedelta(days=1) continue # Progress indicator print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True) # Build file patterns SQL for THIS BATCH file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']' # Query for this batch # Note: For PullRequestReviewEvent, we use the actor as reviewer # For PullRequestReviewCommentEvent, we use the commenter as reviewer query = f""" WITH review_events AS ( SELECT CONCAT( REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'), '/pull/', CAST(payload.pull_request.number AS VARCHAR) ) as pr_url, CASE WHEN type = 'PullRequestReviewEvent' THEN actor.login WHEN type = 'PullRequestReviewCommentEvent' THEN struct_extract(struct_extract(payload.comment, 'user'), 'login') END as reviewer, created_at as reviewed_at FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648) WHERE type IN ('PullRequestReviewEvent', 'PullRequestReviewCommentEvent') AND payload.pull_request.number IS NOT NULL AND ( (type = 'PullRequestReviewEvent' AND actor.login IN ({identifier_list})) OR (type = 'PullRequestReviewCommentEvent' AND struct_extract(struct_extract(payload.comment, 'user'), 'login') IN ({identifier_list})) ) ), pr_status AS ( SELECT CONCAT( REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'), '/pull/', CAST(payload.pull_request.number AS VARCHAR) ) as pr_url, TRY_CAST(json_extract_string(to_json(payload), '$.pull_request.merged_at') AS VARCHAR) as merged_at, created_at as closed_at, ROW_NUMBER() OVER (PARTITION BY CONCAT( REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'), '/pull/', CAST(payload.pull_request.number AS VARCHAR) ) ORDER BY created_at DESC) as rn FROM read_json({file_patterns_sql}, union_by_name=false, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648) WHERE type = 'PullRequestEvent' AND payload.action = 'closed' AND payload.pull_request.number IS NOT NULL AND CONCAT( REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'), '/pull/', CAST(payload.pull_request.number AS VARCHAR) ) IN (SELECT DISTINCT pr_url FROM review_events) ) SELECT re.reviewer, re.pr_url as url, re.reviewed_at, ps.merged_at, ps.closed_at FROM review_events re LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url ORDER BY re.reviewer, re.reviewed_at DESC """ try: results = conn.execute(query).fetchall() batch_reviews = 0 # Add results to accumulating dictionary for row in results: reviewer = row[0] url = row[1] reviewed_at = normalize_date_format(row[2]) if row[2] else None merged_at = normalize_date_format(row[3]) if row[3] else None closed_at = normalize_date_format(row[4]) if row[4] else None if not url or not reviewed_at: continue review_metadata = { 'url': url, 'reviewed_at': reviewed_at, 'merged_at': merged_at, 'closed_at': closed_at, } metadata_by_agent[reviewer].append(review_metadata) batch_reviews += 1 total_reviews += 1 print(f"✓ {batch_reviews} reviews found") except Exception as e: print(f"\n ✗ Batch {batch_num} error: {str(e)}") traceback.print_exc() # Move to next batch current_date = batch_end + timedelta(days=1) # Final summary agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews) print(f"\n ✓ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} agents") return dict(metadata_by_agent) def sync_agents_repo(): """ Sync local bot_data repository with remote using git pull. This is MANDATORY to ensure we have the latest bot data. Raises exception if sync fails. """ if not os.path.exists(AGENTS_REPO_LOCAL_PATH): error_msg = f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}" print(f" ✗ {error_msg}") print(f" Please clone it first: git clone https://huggingface.co/datasets/{AGENTS_REPO}") raise FileNotFoundError(error_msg) if not os.path.exists(os.path.join(AGENTS_REPO_LOCAL_PATH, '.git')): error_msg = f"{AGENTS_REPO_LOCAL_PATH} exists but is not a git repository" print(f" ✗ {error_msg}") raise ValueError(error_msg) try: # Run git pull with extended timeout due to large repository result = subprocess.run( ['git', 'pull'], cwd=AGENTS_REPO_LOCAL_PATH, capture_output=True, text=True, timeout=GIT_SYNC_TIMEOUT ) if result.returncode == 0: output = result.stdout.strip() if "Already up to date" in output or "Already up-to-date" in output: print(f" ✓ Repository is up to date") else: print(f" ✓ Repository synced successfully") if output: # Print first few lines of output lines = output.split('\n')[:5] for line in lines: print(f" {line}") return True else: error_msg = f"Git pull failed: {result.stderr.strip()}" print(f" ✗ {error_msg}") raise RuntimeError(error_msg) except subprocess.TimeoutExpired: error_msg = f"Git pull timed out after {GIT_SYNC_TIMEOUT} seconds" print(f" ✗ {error_msg}") raise TimeoutError(error_msg) except (FileNotFoundError, ValueError, RuntimeError, TimeoutError): raise # Re-raise expected exceptions except Exception as e: error_msg = f"Error syncing repository: {str(e)}" print(f" ✗ {error_msg}") raise RuntimeError(error_msg) from e def load_agents_from_hf(): """ Load all agent metadata JSON files from local git repository. ALWAYS syncs with remote first to ensure we have the latest bot data. """ # MANDATORY: Sync with remote first to get latest bot data print(f" Syncing bot_data repository to get latest agents...") sync_agents_repo() # Will raise exception if sync fails agents = [] # Scan local directory for JSON files if not os.path.exists(AGENTS_REPO_LOCAL_PATH): raise FileNotFoundError(f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}") # Walk through the directory to find all JSON files files_processed = 0 print(f" Loading agent metadata from {AGENTS_REPO_LOCAL_PATH}...") for root, dirs, files in os.walk(AGENTS_REPO_LOCAL_PATH): # Skip .git directory if '.git' in root: continue for filename in files: if not filename.endswith('.json'): continue files_processed += 1 file_path = os.path.join(root, filename) try: with open(file_path, 'r', encoding='utf-8') as f: agent_data = json.load(f) # Only include active agents if agent_data.get('status') != 'active': continue # Extract github_identifier from filename github_identifier = filename.replace('.json', '') agent_data['github_identifier'] = github_identifier agents.append(agent_data) except Exception as e: print(f" ⚠ Error loading {filename}: {str(e)}") continue print(f" ✓ Loaded {len(agents)} active agents (from {files_processed} total files)") return agents def get_pr_status_from_metadata(review_meta): """Derive PR status from merged_at and closed_at fields.""" merged_at = review_meta.get('merged_at') closed_at = review_meta.get('closed_at') if merged_at: return 'merged' elif closed_at: return 'closed' else: return 'open' def calculate_review_stats_from_metadata(metadata_list): """Calculate statistics from a list of review metadata.""" total_reviews = len(metadata_list) merged_prs = sum(1 for review_meta in metadata_list if get_pr_status_from_metadata(review_meta) == 'merged') rejected_prs = sum(1 for review_meta in metadata_list if get_pr_status_from_metadata(review_meta) == 'closed') pending_prs = sum(1 for review_meta in metadata_list if get_pr_status_from_metadata(review_meta) == 'open') # Calculate acceptance rate (exclude pending PRs) completed_prs = merged_prs + rejected_prs acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0 return { 'total_reviews': total_reviews, 'merged_prs': merged_prs, 'pending_prs': pending_prs, 'acceptance_rate': round(acceptance_rate, 2), } def calculate_monthly_metrics_by_agent(all_metadata_dict, agents): """Calculate monthly metrics for all agents for visualization.""" identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')} if not all_metadata_dict: return {'agents': [], 'months': [], 'data': {}} agent_month_data = defaultdict(lambda: defaultdict(list)) for agent_identifier, metadata_list in all_metadata_dict.items(): for review_meta in metadata_list: reviewed_at = review_meta.get('reviewed_at') if not reviewed_at: continue agent_name = identifier_to_name.get(agent_identifier, agent_identifier) try: dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00')) month_key = f"{dt.year}-{dt.month:02d}" agent_month_data[agent_name][month_key].append(review_meta) except Exception as e: print(f"Warning: Could not parse date '{reviewed_at}': {e}") continue all_months = set() for agent_data in agent_month_data.values(): all_months.update(agent_data.keys()) months = sorted(list(all_months)) result_data = {} for agent_name, month_dict in agent_month_data.items(): acceptance_rates = [] total_reviews_list = [] merged_prs_list = [] for month in months: reviews_in_month = month_dict.get(month, []) merged_count = sum(1 for review in reviews_in_month if get_pr_status_from_metadata(review) == 'merged') rejected_count = sum(1 for review in reviews_in_month if get_pr_status_from_metadata(review) == 'closed') total_count = len(reviews_in_month) completed_count = merged_count + rejected_count acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None acceptance_rates.append(acceptance_rate) total_reviews_list.append(total_count) merged_prs_list.append(merged_count) result_data[agent_name] = { 'acceptance_rates': acceptance_rates, 'total_reviews': total_reviews_list, 'merged_prs': merged_prs_list, } agents_list = sorted(list(agent_month_data.keys())) return { 'agents': agents_list, 'months': months, 'data': result_data } def construct_leaderboard_from_metadata(all_metadata_dict, agents): """Construct leaderboard from in-memory review metadata.""" if not agents: print("Error: No agents found") return {} cache_dict = {} for agent in agents: identifier = agent.get('github_identifier') agent_name = agent.get('name', 'Unknown') bot_metadata = all_metadata_dict.get(identifier, []) stats = calculate_review_stats_from_metadata(bot_metadata) cache_dict[identifier] = { 'name': agent_name, 'website': agent.get('website', 'N/A'), 'github_identifier': identifier, **stats } return cache_dict def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics): """Save leaderboard data and monthly metrics to HuggingFace dataset.""" try: token = get_hf_token() if not token: raise Exception("No HuggingFace token found") api = HfApi(token=token) combined_data = { 'last_updated': datetime.now(timezone.utc).isoformat(), 'leaderboard': leaderboard_dict, 'monthly_metrics': monthly_metrics, 'metadata': { 'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS } } with open(LEADERBOARD_FILENAME, 'w') as f: json.dump(combined_data, f, indent=2) try: upload_file_with_backoff( api=api, path_or_fileobj=LEADERBOARD_FILENAME, path_in_repo=LEADERBOARD_FILENAME, repo_id=LEADERBOARD_REPO, repo_type="dataset" ) return True finally: if os.path.exists(LEADERBOARD_FILENAME): os.remove(LEADERBOARD_FILENAME) except Exception as e: print(f"Error saving leaderboard data: {str(e)}") traceback.print_exc() return False # ============================================================================= # MINING FUNCTION # ============================================================================= def mine_all_agents(): """ Mine review metadata for all agents using STREAMING batch processing. Downloads GHArchive data, then uses BATCH-based DuckDB queries. """ print(f"\n[1/4] Downloading GHArchive data...") if not download_all_gharchive_data(): print("Warning: Download had errors, continuing with available data...") print(f"\n[2/4] Loading agent metadata...") agents = load_agents_from_hf() if not agents: print("Error: No agents found") return identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')] if not identifiers: print("Error: No valid agent identifiers found") return print(f"\n[3/4] Mining review metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...") try: conn = get_duckdb_connection() except Exception as e: print(f"Failed to initialize DuckDB connection: {str(e)}") return current_time = datetime.now(timezone.utc) end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0) start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS) try: # USE STREAMING FUNCTION all_metadata = fetch_all_review_metadata_streaming( conn, identifiers, start_date, end_date ) except Exception as e: print(f"Error during DuckDB fetch: {str(e)}") traceback.print_exc() return finally: conn.close() print(f"\n[4/4] Saving leaderboard...") try: leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents) monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents) save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics) except Exception as e: print(f"Error saving leaderboard: {str(e)}") traceback.print_exc() # ============================================================================= # SCHEDULER SETUP # ============================================================================= def setup_scheduler(): """Set up APScheduler to run mining jobs periodically.""" logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logging.getLogger('httpx').setLevel(logging.WARNING) scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE) trigger = CronTrigger( day_of_week=SCHEDULE_DAY_OF_WEEK, hour=SCHEDULE_HOUR, minute=SCHEDULE_MINUTE, timezone=SCHEDULE_TIMEZONE ) scheduler.add_job( mine_all_agents, trigger=trigger, id='mine_all_agents', name='Mine GHArchive data for all agents', replace_existing=True ) next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone)) print(f"Scheduler: Weekly on {SCHEDULE_DAY_OF_WEEK} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}") print(f"Next run: {next_run}\n") print(f"\nScheduler started") scheduler.start() # ============================================================================= # ENTRY POINT # ============================================================================= if __name__ == "__main__": if SCHEDULE_ENABLED: setup_scheduler() else: mine_all_agents()