File size: 28,164 Bytes
9b447a6
5750bb3
9b447a6
 
 
 
0d6aceb
9b447a6
f1f4f5c
 
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671a40
b110dcd
9b447a6
 
 
 
 
325abdd
9b447a6
 
 
f1f4f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c2ab6
 
f1f4f5c
 
0d6aceb
f1f4f5c
 
 
 
 
 
 
 
 
 
 
87c2ab6
 
f1f4f5c
 
0d6aceb
f1f4f5c
 
 
 
 
 
 
9b447a6
 
 
 
ad9701d
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74e2c25
 
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad9701d
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f4f5c
9b447a6
 
 
 
 
 
 
f1f4f5c
9b447a6
 
 
 
 
 
 
c0eda81
f1f4f5c
 
 
 
c0eda81
 
 
 
 
 
9b447a6
 
 
 
 
 
0d6aceb
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6aceb
9b447a6
 
 
 
 
0d6aceb
 
9b447a6
 
 
0d6aceb
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6aceb
d454e42
 
 
 
 
 
 
0d6aceb
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f4f5c
d454e42
 
 
 
 
 
 
 
 
 
 
0d6aceb
d454e42
 
 
 
0d6aceb
d454e42
 
 
9b447a6
 
 
 
22ee755
9b447a6
 
 
 
 
 
c0eda81
 
22ee755
9b447a6
0d6aceb
d454e42
 
0d6aceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
 
 
 
 
 
 
9b447a6
 
 
 
 
3d31827
 
 
9b447a6
 
3d31827
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
9b447a6
c0eda81
3d31827
 
9b447a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
9b447a6
 
c0eda81
3d31827
 
9b447a6
 
 
 
 
 
 
 
 
5750bb3
 
 
 
 
 
 
 
 
9b447a6
 
 
c0eda81
9b447a6
 
3d31827
9b447a6
 
c0eda81
 
9b447a6
 
 
 
 
 
 
d454e42
eed1a0a
9b447a6
0d6aceb
d454e42
 
0d6aceb
 
 
 
 
9b447a6
0d6aceb
 
 
c0eda81
9b447a6
0d6aceb
9b447a6
 
 
 
 
c0eda81
 
 
 
 
9b447a6
c0eda81
 
9b447a6
c0eda81
9b447a6
 
f1f4f5c
9b447a6
c0eda81
325abdd
9b447a6
 
 
0d6aceb
 
c0eda81
9b447a6
 
 
 
 
325abdd
9b447a6
 
 
 
eed1a0a
 
 
9b447a6
0d6aceb
c0eda81
 
9b447a6
 
 
452bbc0
9b447a6
 
0d6aceb
9b447a6
 
 
0d6aceb
9b447a6
0d6aceb
5750bb3
0d6aceb
9b447a6
0d6aceb
9b447a6
 
 
 
5750bb3
9b447a6
 
 
 
 
0d6aceb
9b447a6
 
 
 
 
 
0d6aceb
9b447a6
 
 
f1f4f5c
5750bb3
9b447a6
 
0d6aceb
9b447a6
 
 
 
0d6aceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b447a6
d454e42
0d6aceb
 
 
 
 
 
 
d454e42
0d6aceb
d454e42
0d6aceb
9b447a6
 
 
 
 
 
0d6aceb
 
 
d454e42
0d6aceb
9b447a6
 
0d6aceb
 
 
 
9b447a6
 
 
711093a
0d6aceb
 
 
711093a
9b447a6
 
 
0d6aceb
805848b
0d6aceb
9b447a6
c0eda81
9b447a6
0d6aceb
 
9b447a6
c0eda81
9b447a6
 
5750bb3
 
 
 
 
 
 
 
 
 
9b447a6
 
c0eda81
 
 
 
 
 
9b447a6
c0eda81
 
0d6aceb
c0eda81
 
 
 
 
 
22ee755
c0eda81
 
9b447a6
 
c0eda81
9b447a6
0d6aceb
 
9b447a6
0d6aceb
 
9b447a6
 
 
 
0d6aceb
9b447a6
 
 
 
 
0d6aceb
9b447a6
5750bb3
 
 
9b447a6
 
0d6aceb
9b447a6
 
0d6aceb
9b447a6
 
 
 
 
 
 
 
0d6aceb
9b447a6
 
 
452bbc0
c0eda81
9b447a6
 
 
 
 
0d6aceb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter
import json
import os
import time
import requests
from datetime import datetime, timezone
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
import backoff
from dotenv import load_dotenv
import pandas as pd
import random
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.cron import CronTrigger

# Load environment variables
load_dotenv()

# =============================================================================
# CONFIGURATION
# =============================================================================

AGENTS_REPO = "SWE-Arena/bot_metadata"  # HuggingFace dataset for agent metadata
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata"  # HuggingFace dataset for leaderboard data

LEADERBOARD_COLUMNS = [
    ("Agent Name", "string"),
    ("Website", "string"),
    ("Total Reviews", "number"),
    ("Merged PRs", "number"),
    ("Acceptance Rate (%)", "number"),
]

# =============================================================================
# HUGGINGFACE API WRAPPERS WITH BACKOFF
# =============================================================================

def is_rate_limit_error(e):
    """Check if exception is a HuggingFace rate limit error (429)."""
    if isinstance(e, HfHubHTTPError):
        return e.response.status_code == 429
    return False


@backoff.on_exception(
    backoff.expo,
    HfHubHTTPError,
    max_tries=8,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_rate_limit_error(e),
    on_backoff=lambda details: print(
        f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
    )
)
def list_repo_files_with_backoff(api, **kwargs):
    """Wrapper for api.list_repo_files() with exponential backoff for rate limits."""
    return api.list_repo_files(**kwargs)


@backoff.on_exception(
    backoff.expo,
    HfHubHTTPError,
    max_tries=8,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_rate_limit_error(e),
    on_backoff=lambda details: print(
        f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
    )
)
def hf_hub_download_with_backoff(**kwargs):
    """Wrapper for hf_hub_download() with exponential backoff for rate limits."""
    return hf_hub_download(**kwargs)


# =============================================================================
# GITHUB API OPERATIONS
# =============================================================================

def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
    """
    Perform an HTTP request with exponential backoff and jitter for GitHub API.
    Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.

    Returns the final requests.Response on success or non-retryable status, or None after exhausting retries.
    """
    delay = 1.0
    for attempt in range(max_retries):
        try:
            resp = requests.request(
                method,
                url,
                headers=headers or {},
                params=params,
                json=json_body,
                data=data,
                timeout=timeout
            )

            status = resp.status_code

            # Success
            if 200 <= status < 300:
                return resp

            # Rate limits or server errors -> retry with backoff
            if status in (403, 429) or 500 <= status < 600:
                wait = None

                # Prefer Retry-After when present
                retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
                if retry_after:
                    try:
                        wait = float(retry_after)
                    except Exception:
                        wait = None

                # Fallback to X-RateLimit-Reset when 403/429
                if wait is None and status in (403, 429):
                    reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
                    if reset_hdr:
                        try:
                            reset_timestamp = int(float(reset_hdr))
                            wait = max(reset_timestamp - time.time() + 2, 1)
                        except Exception:
                            wait = None

                # Final fallback: exponential backoff with jitter
                if wait is None:
                    wait = delay + random.uniform(0, 0.5)

                # Cap individual wait to avoid extreme sleeps
                wait = max(1.0, min(wait, 120.0))
                print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
                time.sleep(wait)
                delay = min(delay * 2, 60.0)
                continue

            # Non-retryable error; return response for caller to handle
            return resp

        except requests.RequestException as e:
            # Network error -> retry with backoff
            wait = delay + random.uniform(0, 0.5)
            wait = max(1.0, min(wait, 60.0))
            print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
            time.sleep(wait)
            delay = min(delay * 2, 60.0)

    print(f"Exceeded max retries for {url}")
    return None


def validate_github_username(identifier):
    """Verify that a GitHub identifier exists with backoff-aware requests."""
    try:
        url = f'https://api.github.com/users/{identifier}'
        response = request_with_backoff('GET', url, max_retries=1)
        if response is None:
            return False, "Validation error: network/rate limit exhausted"
        if response.status_code == 200:
            return True, "Username is valid"
        elif response.status_code == 404:
            return False, "GitHub identifier not found"
        else:
            return False, f"Validation error: HTTP {response.status_code}"
    except Exception as e:
        return False, f"Validation error: {str(e)}"


# =============================================================================
# HUGGINGFACE DATASET OPERATIONS
# =============================================================================

def load_agents_from_hf():
    """Load all agent metadata JSON files from HuggingFace dataset."""
    try:
        api = HfApi()
        agents = []

        # List all files in the repository
        files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")

        # Filter for JSON files only
        json_files = [f for f in files if f.endswith('.json')]

        # Download and parse each JSON file
        for json_file in json_files:
            try:
                file_path = hf_hub_download_with_backoff(
                    repo_id=AGENTS_REPO,
                    filename=json_file,
                    repo_type="dataset"
                )

                with open(file_path, 'r') as f:
                    agent_data = json.load(f)

                    # Only process agents with status == "public"
                    if agent_data.get('status') != 'public':
                        continue

                    # Extract github_identifier from filename (e.g., "claude[bot].json" -> "claude[bot]")
                    filename_identifier = json_file.replace('.json', '')

                    # Add or override github_identifier to match filename
                    agent_data['github_identifier'] = filename_identifier

                    agents.append(agent_data)

            except Exception as e:
                print(f"Warning: Could not load {json_file}: {str(e)}")
                continue

        print(f"Loaded {len(agents)} agents from HuggingFace")
        return agents

    except Exception as e:
        print(f"Could not load agents from HuggingFace: {str(e)}")
        return None


def get_hf_token():
    """Get HuggingFace token from environment variables."""
    token = os.getenv('HF_TOKEN')
    if not token:
        print("Warning: HF_TOKEN not found in environment variables")
    return token


def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
    """
    Upload file to HuggingFace with exponential backoff retry logic.

    Args:
        api: HfApi instance
        path_or_fileobj: Local file path to upload
        path_in_repo: Target path in the repository
        repo_id: Repository ID
        repo_type: Type of repository (e.g., "dataset")
        token: HuggingFace token
        max_retries: Maximum number of retry attempts

    Returns:
        True if upload succeeded, raises exception if all retries failed
    """
    delay = 2.0  # Initial delay in seconds

    for attempt in range(max_retries):
        try:
            api.upload_file(
                path_or_fileobj=path_or_fileobj,
                path_in_repo=path_in_repo,
                repo_id=repo_id,
                repo_type=repo_type,
                token=token
            )
            if attempt > 0:
                print(f"   Upload succeeded on attempt {attempt + 1}/{max_retries}")
            return True

        except Exception as e:
            if attempt < max_retries - 1:
                wait_time = delay + random.uniform(0, 1.0)
                print(f"   Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
                print(f"   Retrying in {wait_time:.1f} seconds...")
                time.sleep(wait_time)
                delay = min(delay * 2, 60.0)  # Exponential backoff, max 60s
            else:
                print(f"   Upload failed after {max_retries} attempts: {str(e)}")
                raise


def save_agent_to_hf(data):
    """Save a new agent to HuggingFace dataset as {identifier}.json in root."""
    try:
        api = HfApi()
        token = get_hf_token()

        if not token:
            raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")

        identifier = data['github_identifier']
        filename = f"{identifier}.json"

        # Save locally first
        with open(filename, 'w') as f:
            json.dump(data, f, indent=2)

        try:
            # Upload to HuggingFace (root directory)
            upload_with_retry(
                api=api,
                path_or_fileobj=filename,
                path_in_repo=filename,
                repo_id=AGENTS_REPO,
                repo_type="dataset",
                token=token
            )
            print(f"Saved agent to HuggingFace: {filename}")
            return True
        finally:
            # Always clean up local file, even if upload fails
            if os.path.exists(filename):
                os.remove(filename)

    except Exception as e:
        print(f"Error saving agent: {str(e)}")
        return False


def load_leaderboard_data_from_hf():
    """
    Load leaderboard data and monthly metrics from HuggingFace dataset.

    Returns:
        dict: Dictionary with 'leaderboard', 'monthly_metrics', and 'last_updated' keys
              Returns None if file doesn't exist or error occurs
    """
    try:
        token = get_hf_token()
        filename = "swe-review.json"

        # Download file
        file_path = hf_hub_download_with_backoff(
            repo_id=LEADERBOARD_REPO,
            filename=filename,
            repo_type="dataset",
            token=token
        )

        # Load JSON data
        with open(file_path, 'r') as f:
            data = json.load(f)

        last_updated = data.get('last_updated', 'Unknown')
        print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")

        return data

    except Exception as e:
        print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
        return None


# =============================================================================
# UI FUNCTIONS
# =============================================================================

def create_monthly_metrics_plot(top_n=5):
    """
    Create a Plotly figure with dual y-axes showing:
    - Left y-axis: Acceptance Rate (%) as line curves
    - Right y-axis: Total Reviews created as bar charts

    Each agent gets a unique color for both their line and bars.

    Args:
        top_n: Number of top agents to show (default: 5)
    """
    # Load from saved dataset
    saved_data = load_leaderboard_data_from_hf()

    if not saved_data or 'monthly_metrics' not in saved_data:
        # Return an empty figure with a message
        fig = go.Figure()
        fig.add_annotation(
            text="No data available for visualization",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=16)
        )
        fig.update_layout(
            title=None,
            xaxis_title=None,
            height=500
        )
        return fig

    metrics = saved_data['monthly_metrics']
    print(f"Loaded monthly metrics from saved dataset")

    # Apply top_n filter if specified
    if top_n is not None and top_n > 0 and metrics.get('agents'):
        # Calculate total reviews for each agent
        agent_totals = []
        for agent_name in metrics['agents']:
            agent_data = metrics['data'].get(agent_name, {})
            total_reviews = sum(agent_data.get('total_reviews', []))
            agent_totals.append((agent_name, total_reviews))

        # Sort by total reviews and take top N
        agent_totals.sort(key=lambda x: x[1], reverse=True)
        top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]

        # Filter metrics to only include top agents
        metrics = {
            'agents': top_agents,
            'months': metrics['months'],
            'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
        }

    if not metrics['agents'] or not metrics['months']:
        # Return an empty figure with a message
        fig = go.Figure()
        fig.add_annotation(
            text="No data available for visualization",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=16)
        )
        fig.update_layout(
            title=None,
            xaxis_title=None,
            height=500
        )
        return fig

    # Create figure with secondary y-axis
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    # Generate unique colors for many agents using HSL color space
    def generate_color(index, total):
        """Generate distinct colors using HSL color space for better distribution"""
        hue = (index * 360 / total) % 360
        saturation = 70 + (index % 3) * 10  # Vary saturation slightly
        lightness = 45 + (index % 2) * 10   # Vary lightness slightly
        return f'hsl({hue}, {saturation}%, {lightness}%)'

    agents = metrics['agents']
    months = metrics['months']
    data = metrics['data']

    # Generate colors for all agents
    agent_colors = {agent: generate_color(idx, len(agents)) for idx, agent in enumerate(agents)}

    # Add traces for each agent
    for idx, agent_name in enumerate(agents):
        color = agent_colors[agent_name]
        agent_data = data[agent_name]

        # Add line trace for acceptance rate (left y-axis)
        acceptance_rates = agent_data['acceptance_rates']
        # Filter out None values for plotting
        x_acceptance = [month for month, rate in zip(months, acceptance_rates) if rate is not None]
        y_acceptance = [rate for rate in acceptance_rates if rate is not None]

        if x_acceptance and y_acceptance:  # Only add trace if there's data
            fig.add_trace(
                go.Scatter(
                    x=x_acceptance,
                    y=y_acceptance,
                    name=agent_name,
                    mode='lines+markers',
                    line=dict(color=color, width=2),
                    marker=dict(size=8),
                    legendgroup=agent_name,
                    showlegend=(top_n is not None and top_n <= 10),  # Show legend for top N agents
                    hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
                                 'Month: %{x}<br>' +
                                 'Acceptance Rate: %{y:.2f}%<br>' +
                                 '<extra></extra>'
                ),
                secondary_y=False
            )

        # Add bar trace for total reviews (right y-axis)
        # Only show bars for months where agent has reviews
        x_bars = []
        y_bars = []
        for month, count in zip(months, agent_data['total_reviews']):
            if count > 0:  # Only include months with reviews
                x_bars.append(month)
                y_bars.append(count)

        if x_bars and y_bars:  # Only add trace if there's data
            fig.add_trace(
                go.Bar(
                    x=x_bars,
                    y=y_bars,
                    name=agent_name,
                    marker=dict(color=color, opacity=0.6),
                    legendgroup=agent_name,
                    showlegend=False,  # Hide duplicate legend entry (already shown in Scatter)
                    hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
                                 'Month: %{x}<br>' +
                                 'Total Reviews: %{y}<br>' +
                                 '<extra></extra>',
                    offsetgroup=agent_name  # Group bars by agent for proper spacing
                ),
                secondary_y=True
            )

    # Update axes labels
    fig.update_xaxes(title_text=None)
    fig.update_yaxes(
        title_text="<b>Acceptance Rate (%)</b>",
        range=[0, 100],
        secondary_y=False,
        showticklabels=True,
        tickmode='linear',
        dtick=10,
        showgrid=True
    )
    fig.update_yaxes(title_text="<b>Total Reviews</b>", secondary_y=True)

    # Update layout
    show_legend = (top_n is not None and top_n <= 10)
    fig.update_layout(
        title=None,
        hovermode='closest',  # Show individual agent info on hover
        barmode='group',
        height=600,
        showlegend=show_legend,
        margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50)  # More right margin when legend is shown
    )

    return fig


def get_leaderboard_dataframe():
    """
    Load leaderboard from saved dataset and convert to pandas DataFrame for display.
    Returns formatted DataFrame sorted by total reviews.
    """
    # Load from saved dataset
    saved_data = load_leaderboard_data_from_hf()

    if not saved_data or 'leaderboard' not in saved_data:
        print(f"No leaderboard data available")
        # Return empty DataFrame with correct columns if no data
        column_names = [col[0] for col in LEADERBOARD_COLUMNS]
        return pd.DataFrame(columns=column_names)

    cache_dict = saved_data['leaderboard']
    print(f"Loaded leaderboard from saved dataset (last updated: {saved_data.get('last_updated', 'Unknown')})")
    print(f"Cache dict size: {len(cache_dict)}")

    if not cache_dict:
        print("WARNING: cache_dict is empty!")
        # Return empty DataFrame with correct columns if no data
        column_names = [col[0] for col in LEADERBOARD_COLUMNS]
        return pd.DataFrame(columns=column_names)

    rows = []
    filtered_count = 0
    for identifier, data in cache_dict.items():
        total_reviews = data.get('total_reviews', 0)
        print(f"   Agent '{identifier}': {total_reviews} reviews")

        # Filter out agents with zero total reviews
        if total_reviews == 0:
            filtered_count += 1
            continue

        # Only include display-relevant fields
        rows.append([
            data.get('name', 'Unknown'),
            data.get('website', 'N/A'),
            total_reviews,
            data.get('merged_prs', 0),
            data.get('acceptance_rate', 0.0),
        ])

    print(f"Filtered out {filtered_count} agents with 0 reviews")
    print(f"Leaderboard will show {len(rows)} agents")

    # Create DataFrame
    column_names = [col[0] for col in LEADERBOARD_COLUMNS]
    df = pd.DataFrame(rows, columns=column_names)

    # Ensure numeric types
    numeric_cols = ["Total Reviews", "Merged PRs", "Acceptance Rate (%)"]
    for col in numeric_cols:
        if col in df.columns:
            df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)

    # Sort by Total Reviews descending
    if "Total Reviews" in df.columns and not df.empty:
        df = df.sort_values(by="Total Reviews", ascending=False).reset_index(drop=True)

    print(f"Final DataFrame shape: {df.shape}")
    print("="*60 + "\n")

    return df


def submit_agent(identifier, agent_name, developer, website):
    """
    Submit a new agent to the leaderboard.
    Validates input and saves submission.
    """
    # Validate required fields
    if not identifier or not identifier.strip():
        return "ERROR: GitHub identifier is required", get_leaderboard_dataframe()
    if not agent_name or not agent_name.strip():
        return "ERROR: Agent name is required", get_leaderboard_dataframe()
    if not developer or not developer.strip():
        return "ERROR: Developer name is required", get_leaderboard_dataframe()
    if not website or not website.strip():
        return "ERROR: Website URL is required", get_leaderboard_dataframe()

    # Clean inputs
    identifier = identifier.strip()
    agent_name = agent_name.strip()
    developer = developer.strip()
    website = website.strip()

    # Validate GitHub identifier
    is_valid, message = validate_github_username(identifier)
    if not is_valid:
        return f"ERROR: {message}", get_leaderboard_dataframe()

    # Check for duplicates by loading agents from HuggingFace
    agents = load_agents_from_hf()
    if agents:
        existing_names = {agent['github_identifier'] for agent in agents}
        if identifier in existing_names:
            return f"WARNING: Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()

    # Create submission
    submission = {
        'name': agent_name,
        'developer': developer,
        'github_identifier': identifier,
        'website': website,
        'status': 'public'
    }

    # Save to HuggingFace
    if not save_agent_to_hf(submission):
        return "ERROR: Failed to save submission", get_leaderboard_dataframe()

    # Return success message - data will be populated by backend updates
    return f"SUCCESS: Successfully submitted {agent_name}! Review data will be populated by the backend system.", get_leaderboard_dataframe()


# =============================================================================
# DATA RELOAD FUNCTION
# =============================================================================

def reload_leaderboard_data():
    """
    Reload leaderboard data from HuggingFace.
    This function is called by the scheduler on a daily basis.
    """
    print(f"\n{'='*80}")
    print(f"Reloading leaderboard data from HuggingFace...")
    print(f"{'='*80}\n")

    try:
        data = load_leaderboard_data_from_hf()
        if data:
            print(f"Successfully reloaded leaderboard data")
            print(f"   Last updated: {data.get('last_updated', 'Unknown')}")
            print(f"   Agents: {len(data.get('leaderboard', {}))}")
        else:
            print(f"No data available")
    except Exception as e:
        print(f"Error reloading leaderboard data: {str(e)}")

    print(f"{'='*80}\n")


# =============================================================================
# GRADIO APPLICATION
# =============================================================================

print(f"\nStarting SWE Agent PR Leaderboard")
print(f"   Data source: {LEADERBOARD_REPO}")
print(f"   Reload frequency: Daily at 12:00 AM UTC\n")

# Start APScheduler for daily data reload at 12:00 AM UTC
scheduler = BackgroundScheduler(timezone="UTC")
scheduler.add_job(
    reload_leaderboard_data,
    trigger=CronTrigger(hour=0, minute=0),  # 12:00 AM UTC daily
    id='daily_data_reload',
    name='Daily Data Reload',
    replace_existing=True
)
scheduler.start()
print(f"\n{'='*80}")
print(f"Scheduler initialized successfully")
print(f"Reload schedule: Daily at 12:00 AM UTC")
print(f"On startup: Loads cached data from HuggingFace on demand")
print(f"{'='*80}\n")

# Create Gradio interface
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
    gr.Markdown("# SWE Agent Review Leaderboard")
    gr.Markdown(f"Track and compare GitHub PR review acceptance statistics for SWE agents")

    with gr.Tabs():

        # Leaderboard Tab
        with gr.Tab("Leaderboard"):
            gr.Markdown("*Statistics are based on agent review activity tracked by the system*")
            leaderboard_table = Leaderboard(
                value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]),  # Empty initially
                datatype=LEADERBOARD_COLUMNS,
                search_columns=["Agent Name", "Website"],
                filter_columns=[
                    ColumnFilter(
                        "Acceptance Rate (%)",
                        min=0,
                        max=100,
                        default=[0, 100],
                        type="slider",
                        label="Acceptance Rate (%)"
                    )
                ]
            )

            # Load leaderboard data when app starts
            app.load(
                fn=get_leaderboard_dataframe,
                inputs=[],
                outputs=[leaderboard_table]
            )

            # Monthly Metrics Section
            gr.Markdown("---")  # Divider
            gr.Markdown("### Monthly Performance - Top 5 Agents")
            gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")

            monthly_metrics_plot = gr.Plot(label="Monthly Metrics")

            # Load monthly metrics when app starts
            app.load(
                fn=lambda: create_monthly_metrics_plot(),
                inputs=[],
                outputs=[monthly_metrics_plot]
            )


        # Submit Agent Tab
        with gr.Tab("Submit Agent"):

            gr.Markdown("### Submit Your Agent")
            gr.Markdown("Fill in the details below to add your agent to the leaderboard.")

            with gr.Row():
                with gr.Column():
                    github_input = gr.Textbox(
                        label="GitHub Identifier*",
                        placeholder="Your agent username (e.g., claude[bot])"
                    )
                    name_input = gr.Textbox(
                        label="Agent Name*",
                        placeholder="Your agent's display name"
                    )

                with gr.Column():
                    developer_input = gr.Textbox(
                        label="Developer*",
                        placeholder="Your developer or team name"
                    )
                    website_input = gr.Textbox(
                        label="Website*",
                        placeholder="https://your-agent-website.com"
                    )

            submit_button = gr.Button(
                "Submit Agent",
                variant="primary"
            )
            submission_status = gr.Textbox(
                label="Submission Status",
                interactive=False
            )

            # Event handler
            submit_button.click(
                fn=submit_agent,
                inputs=[github_input, name_input, developer_input, website_input],
                outputs=[submission_status, leaderboard_table]
            )


# Launch application
if __name__ == "__main__":
    app.launch()