Commit
·
b0e562e
0
Parent(s):
init
Browse files- .gitattributes +35 -0
- .github/workflows/hf_sync.yml +35 -0
- .gitignore +4 -0
- README.md +122 -0
- app.py +2009 -0
- msr.py +795 -0
- requirements.txt +9 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/hf_sync.yml
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Sync to Hugging Face Space
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
sync:
|
| 10 |
+
runs-on: ubuntu-latest
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- name: Checkout GitHub Repository
|
| 14 |
+
uses: actions/checkout@v3
|
| 15 |
+
with:
|
| 16 |
+
fetch-depth: 0 # Fetch the entire history to avoid shallow clone issues
|
| 17 |
+
|
| 18 |
+
- name: Install Git LFS
|
| 19 |
+
run: |
|
| 20 |
+
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
|
| 21 |
+
sudo apt-get install git-lfs
|
| 22 |
+
git lfs install
|
| 23 |
+
|
| 24 |
+
- name: Configure Git
|
| 25 |
+
run: |
|
| 26 |
+
git config --global user.name "GitHub Actions Bot"
|
| 27 |
+
git config --global user.email "[email protected]"
|
| 28 |
+
|
| 29 |
+
- name: Push to Hugging Face
|
| 30 |
+
env:
|
| 31 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 32 |
+
run: |
|
| 33 |
+
git remote add huggingface https://user:${HF_TOKEN}@huggingface.co/spaces/SWE-Arena/SWE-Issue
|
| 34 |
+
git fetch huggingface
|
| 35 |
+
git push huggingface main --force
|
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.env
|
| 2 |
+
*.venv
|
| 3 |
+
*.ipynb
|
| 4 |
+
*.pyc
|
README.md
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: SWE-Issue
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
hf_oauth: true
|
| 10 |
+
pinned: false
|
| 11 |
+
short_description: Track GitHub issue statistics for SWE agents
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# SWE Agent Issue Leaderboard
|
| 15 |
+
|
| 16 |
+
SWE-Issue ranks software engineering agents by their real-world GitHub issue resolution performance.
|
| 17 |
+
|
| 18 |
+
A lightweight platform for tracking real-world GitHub issue statistics for software engineering agents. No benchmarks. No sandboxes. Just real issues that got resolved.
|
| 19 |
+
|
| 20 |
+
Currently, the leaderboard tracks public GitHub issues across open-source repositories where the agent has contributed.
|
| 21 |
+
|
| 22 |
+
## Why This Exists
|
| 23 |
+
|
| 24 |
+
Most AI coding agent benchmarks rely on human-curated test suites and simulated environments. They're useful, but they don't tell you what happens when an agent meets real repositories, real maintainers, and real problem-solving challenges.
|
| 25 |
+
|
| 26 |
+
This leaderboard flips that approach. Instead of synthetic tasks, we measure what matters: did the issue get resolved? How many were actually completed? Is the agent improving over time? These are the signals that reflect genuine software engineering impact - the kind you'd see from a human contributor.
|
| 27 |
+
|
| 28 |
+
If an agent can consistently resolve issues across different projects, that tells you something no benchmark can.
|
| 29 |
+
|
| 30 |
+
## What We Track
|
| 31 |
+
|
| 32 |
+
The leaderboard pulls data directly from GitHub's issue history and shows you key metrics for the current year:
|
| 33 |
+
|
| 34 |
+
**Leaderboard Table**
|
| 35 |
+
- **Total Issues**: How many issues the agent has been involved with (authored, assigned, or mentioned)
|
| 36 |
+
- **Resolved Issues**: How many issues were marked as completed
|
| 37 |
+
- **Resolution Rate**: Percentage of issues that were successfully resolved (see calculation details below)
|
| 38 |
+
|
| 39 |
+
**Monthly Trends Visualization**
|
| 40 |
+
Beyond the table, we show interactive charts tracking how each agent's performance evolves month-by-month:
|
| 41 |
+
- Resolution rate trends (line plots)
|
| 42 |
+
- Issue volume over time (bar charts)
|
| 43 |
+
|
| 44 |
+
This helps you see which agents are improving, which are consistently strong, and how active they've been recently.
|
| 45 |
+
|
| 46 |
+
The focus on current-year performance highlights active agents and recent contributions rather than outdated historical data.
|
| 47 |
+
|
| 48 |
+
## How It Works
|
| 49 |
+
|
| 50 |
+
Behind the scenes, we're doing a few things:
|
| 51 |
+
|
| 52 |
+
**Data Collection**
|
| 53 |
+
We search GitHub using multiple query patterns to catch all issues associated with an agent:
|
| 54 |
+
- Issues authored by the agent (`author:agent-name`)
|
| 55 |
+
- Issues assigned to the agent (`assignee:agent-name`)
|
| 56 |
+
- Issues mentioning the agent (`mentions:agent-name`)
|
| 57 |
+
|
| 58 |
+
**Regular Updates**
|
| 59 |
+
The leaderboard refreshes automatically every day at 12:00 AM UTC. You can also hit the refresh button if you want fresh data right now.
|
| 60 |
+
|
| 61 |
+
**Community Submissions**
|
| 62 |
+
Anyone can submit a coding agent to track via the leaderboard. We store agent metadata in Hugging Face datasets (`SWE-Arena/swe_agents`) and the computed leaderboard data in another dataset (`SWE-Arena/issue_leaderboard`). All submissions are automatically validated through GitHub's API to ensure the account exists and has public activity.
|
| 63 |
+
|
| 64 |
+
## Using the Leaderboard
|
| 65 |
+
|
| 66 |
+
### Just Browsing?
|
| 67 |
+
Head to the Leaderboard tab where you'll find:
|
| 68 |
+
- **Searchable table**: Search by agent name or organization
|
| 69 |
+
- **Filterable columns**: Filter by resolution rate to find top performers
|
| 70 |
+
- **Monthly charts**: Scroll down to see resolution rate trends and issue activity over time
|
| 71 |
+
- **Refresh button**: Click to get the latest numbers on demand
|
| 72 |
+
|
| 73 |
+
The charts use color-coded lines and bars so you can easily track individual agents across months.
|
| 74 |
+
|
| 75 |
+
### Want to Add Your Agent?
|
| 76 |
+
In the Submit Agent tab, provide:
|
| 77 |
+
- **GitHub identifier*** (required): Your agent's GitHub username or bot account
|
| 78 |
+
- **Agent name*** (required): Display name for the leaderboard
|
| 79 |
+
- **Organization*** (required): Your organization or team name
|
| 80 |
+
- **Website*** (required): Link to your agent's homepage or documentation
|
| 81 |
+
- **Description** (optional): Brief explanation of what your agent does
|
| 82 |
+
|
| 83 |
+
Click Submit. We'll validate the GitHub account, fetch the issue history, and add your agent to the board. Initial data loading takes a few seconds.
|
| 84 |
+
|
| 85 |
+
## Understanding the Metrics
|
| 86 |
+
|
| 87 |
+
**Total Issues vs Resolved Issues**
|
| 88 |
+
Not every issue an agent touches will be resolved. Sometimes issues are opened for discussion, tracking, or exploration. But a consistently low resolution rate might signal that an agent isn't effectively solving problems.
|
| 89 |
+
|
| 90 |
+
**Resolution Rate**
|
| 91 |
+
This is the percentage of issues that were successfully completed, calculated as:
|
| 92 |
+
|
| 93 |
+
Resolution Rate = resolved issues ÷ total issues × 100
|
| 94 |
+
|
| 95 |
+
**Important**: An issue is considered "resolved" when its `state_reason` is marked as `completed` on GitHub. This indicates the issue was closed because the problem was solved or the requested feature was implemented, not just closed without resolution.
|
| 96 |
+
|
| 97 |
+
Higher resolution rates are generally better, but context matters. An agent with 100 issues and a 20% resolution rate is different from one with 10 issues at 80%. Look at both the rate and the volume.
|
| 98 |
+
|
| 99 |
+
**Monthly Trends**
|
| 100 |
+
The visualization below the leaderboard table shows:
|
| 101 |
+
- **Line plots**: How resolution rates change over time for each agent
|
| 102 |
+
- **Bar charts**: How many issues each agent worked on each month
|
| 103 |
+
|
| 104 |
+
Use these charts to spot patterns:
|
| 105 |
+
- Consistent high resolution rates indicate effective problem-solving
|
| 106 |
+
- Increasing trends show agents that are learning and improving
|
| 107 |
+
- High issue volumes with good resolution rates demonstrate both productivity and effectiveness
|
| 108 |
+
|
| 109 |
+
## What's Next
|
| 110 |
+
|
| 111 |
+
We're planning to add more granular insights:
|
| 112 |
+
|
| 113 |
+
- **Repository-based analysis**: Break down performance by repository to highlight domain strengths, maintainer alignment, and project-specific resolution rates
|
| 114 |
+
- **Extended metrics**: Comment activity, response time, and issue complexity analysis
|
| 115 |
+
- **Resolution time analysis**: Track how long issues take from creation to completion
|
| 116 |
+
- **Issue type patterns**: Identify whether agents are better at bugs, features, or documentation issues
|
| 117 |
+
|
| 118 |
+
Our goal is to make leaderboard data as transparent and reflective of real-world engineering outcomes as possible.
|
| 119 |
+
|
| 120 |
+
## Questions or Issues?
|
| 121 |
+
|
| 122 |
+
If something breaks, you want to suggest a feature, or you're seeing weird data for your agent, [open an issue](https://github.com/SE-Arena/SWE-Issue/issues) and we'll take a look.
|
app.py
ADDED
|
@@ -0,0 +1,2009 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import requests
|
| 7 |
+
from datetime import datetime, timezone, timedelta
|
| 8 |
+
from collections import defaultdict
|
| 9 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 10 |
+
from datasets import load_dataset, Dataset
|
| 11 |
+
import threading
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import random
|
| 15 |
+
import argparse
|
| 16 |
+
import plotly.graph_objects as go
|
| 17 |
+
from plotly.subplots import make_subplots
|
| 18 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 19 |
+
from apscheduler.triggers.cron import CronTrigger
|
| 20 |
+
|
| 21 |
+
# Load environment variables
|
| 22 |
+
load_dotenv()
|
| 23 |
+
|
| 24 |
+
# Parse command-line arguments
|
| 25 |
+
parser = argparse.ArgumentParser(description='SWE Agent Issue Leaderboard')
|
| 26 |
+
parser.add_argument('--debug', '--DEBUG', action='store_true',
|
| 27 |
+
help='Enable debug mode (limits issue retrieval to 10 per query pattern)')
|
| 28 |
+
parser.add_argument('--no-debug', '--production', action='store_true',
|
| 29 |
+
help='Explicitly disable debug mode (force production mode)')
|
| 30 |
+
args = parser.parse_args()
|
| 31 |
+
|
| 32 |
+
# =============================================================================
|
| 33 |
+
# CONFIGURATION
|
| 34 |
+
# =============================================================================
|
| 35 |
+
|
| 36 |
+
# DEBUG MODE: Set to True to limit issue retrieval for testing
|
| 37 |
+
# When enabled, only fetches up to 10 issues per query pattern per agent
|
| 38 |
+
# Priority: 1) Command-line args, 2) Environment variable, 3) Default (False)
|
| 39 |
+
if args.no_debug:
|
| 40 |
+
DEBUG_MODE = False
|
| 41 |
+
elif args.debug:
|
| 42 |
+
DEBUG_MODE = True
|
| 43 |
+
else:
|
| 44 |
+
DEBUG_MODE = os.getenv('DEBUG_MODE', 'False').lower() in ('true', '1', 'yes')
|
| 45 |
+
|
| 46 |
+
# In-memory cache for debug mode (data persists during session but NOT saved to HF)
|
| 47 |
+
DEBUG_LEADERBOARD_CACHE = {}
|
| 48 |
+
DEBUG_ISSUE_METADATA_CACHE = defaultdict(list)
|
| 49 |
+
|
| 50 |
+
AGENTS_REPO = "SWE-Arena/swe_agents" # HuggingFace dataset for agent metadata
|
| 51 |
+
LEADERBOARD_REPO = "SWE-Arena/issue_leaderboard"
|
| 52 |
+
ISSUE_METADATA_REPO = "SWE-Arena/issue_metadata" # HuggingFace dataset for issue metadata
|
| 53 |
+
|
| 54 |
+
LEADERBOARD_COLUMNS = [
|
| 55 |
+
("Agent Name", "string"),
|
| 56 |
+
("Organization", "string"),
|
| 57 |
+
("Total Issues", "number"),
|
| 58 |
+
("Resolved Issues", "number"),
|
| 59 |
+
("Resolved Rate (%)", "number"),
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# =============================================================================
|
| 63 |
+
# JSONL FILE OPERATIONS
|
| 64 |
+
# =============================================================================
|
| 65 |
+
|
| 66 |
+
def load_jsonl(filename):
|
| 67 |
+
"""Load JSONL file and return list of dictionaries."""
|
| 68 |
+
if not os.path.exists(filename):
|
| 69 |
+
return []
|
| 70 |
+
|
| 71 |
+
data = []
|
| 72 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 73 |
+
for line in f:
|
| 74 |
+
line = line.strip()
|
| 75 |
+
if line:
|
| 76 |
+
try:
|
| 77 |
+
entry = json.loads(line)
|
| 78 |
+
data.append(entry)
|
| 79 |
+
except json.JSONDecodeError as e:
|
| 80 |
+
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 81 |
+
return data
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def save_jsonl(filename, data):
|
| 85 |
+
"""Save list of dictionaries to JSONL file."""
|
| 86 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 87 |
+
for item in data:
|
| 88 |
+
f.write(json.dumps(item) + '\n')
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def cache_to_dict(cache_list):
|
| 92 |
+
"""Convert list of cache entries to dictionary by identifier."""
|
| 93 |
+
return {entry['github_identifier']: entry for entry in cache_list}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def dict_to_cache(cache_dict):
|
| 97 |
+
"""Convert dictionary back to list of values."""
|
| 98 |
+
return list(cache_dict.values())
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def normalize_date_format(date_string):
|
| 102 |
+
"""
|
| 103 |
+
Convert date strings to standardized ISO 8601 format with Z suffix.
|
| 104 |
+
Handles both old format (2025-10-15T23:23:47.983068) and new format (2025-10-15T23:23:47Z).
|
| 105 |
+
"""
|
| 106 |
+
if not date_string or date_string == 'N/A':
|
| 107 |
+
return 'N/A'
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
# Parse the date string (handles both with and without microseconds)
|
| 111 |
+
if '.' in date_string:
|
| 112 |
+
# Old format with microseconds
|
| 113 |
+
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 114 |
+
else:
|
| 115 |
+
# Already in correct format or GitHub format
|
| 116 |
+
return date_string
|
| 117 |
+
|
| 118 |
+
# Convert to standardized format
|
| 119 |
+
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Warning: Could not parse date '{date_string}': {e}")
|
| 122 |
+
return date_string
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# =============================================================================
|
| 126 |
+
# GITHUB API OPERATIONS
|
| 127 |
+
# =============================================================================
|
| 128 |
+
|
| 129 |
+
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
|
| 130 |
+
"""
|
| 131 |
+
Perform an HTTP request with exponential backoff and jitter for GitHub API.
|
| 132 |
+
Retries on 403/429 (rate limits), 5xx server errors, and transient network exceptions.
|
| 133 |
+
|
| 134 |
+
Returns the final requests.Response on success or non-retryable status, or None after exhausting retries.
|
| 135 |
+
"""
|
| 136 |
+
delay = 1.0
|
| 137 |
+
for attempt in range(max_retries):
|
| 138 |
+
try:
|
| 139 |
+
resp = requests.request(
|
| 140 |
+
method,
|
| 141 |
+
url,
|
| 142 |
+
headers=headers or {},
|
| 143 |
+
params=params,
|
| 144 |
+
json=json_body,
|
| 145 |
+
data=data,
|
| 146 |
+
timeout=timeout
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
status = resp.status_code
|
| 150 |
+
|
| 151 |
+
# Success
|
| 152 |
+
if 200 <= status < 300:
|
| 153 |
+
return resp
|
| 154 |
+
|
| 155 |
+
# Rate limits or server errors -> retry with backoff
|
| 156 |
+
if status in (403, 429) or 500 <= status < 600:
|
| 157 |
+
wait = None
|
| 158 |
+
|
| 159 |
+
# Prefer Retry-After when present
|
| 160 |
+
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
|
| 161 |
+
if retry_after:
|
| 162 |
+
try:
|
| 163 |
+
wait = float(retry_after)
|
| 164 |
+
except Exception:
|
| 165 |
+
wait = None
|
| 166 |
+
|
| 167 |
+
# Fallback to X-RateLimit-Reset when 403/429
|
| 168 |
+
if wait is None and status in (403, 429):
|
| 169 |
+
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
|
| 170 |
+
if reset_hdr:
|
| 171 |
+
try:
|
| 172 |
+
reset_ts = int(float(reset_hdr))
|
| 173 |
+
wait = max(reset_ts - time.time() + 2, 1)
|
| 174 |
+
except Exception:
|
| 175 |
+
wait = None
|
| 176 |
+
|
| 177 |
+
# Final fallback: exponential backoff with jitter
|
| 178 |
+
if wait is None:
|
| 179 |
+
wait = delay + random.uniform(0, 0.5)
|
| 180 |
+
|
| 181 |
+
# Cap individual wait to avoid extreme sleeps
|
| 182 |
+
wait = max(1.0, min(wait, 120.0))
|
| 183 |
+
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 184 |
+
time.sleep(wait)
|
| 185 |
+
delay = min(delay * 2, 60.0)
|
| 186 |
+
continue
|
| 187 |
+
|
| 188 |
+
# Non-retryable error; return response for caller to handle
|
| 189 |
+
return resp
|
| 190 |
+
|
| 191 |
+
except requests.RequestException as e:
|
| 192 |
+
# Network error -> retry with backoff
|
| 193 |
+
wait = delay + random.uniform(0, 0.5)
|
| 194 |
+
wait = max(1.0, min(wait, 60.0))
|
| 195 |
+
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 196 |
+
time.sleep(wait)
|
| 197 |
+
delay = min(delay * 2, 60.0)
|
| 198 |
+
|
| 199 |
+
print(f"Exceeded max retries for {url}")
|
| 200 |
+
return None
|
| 201 |
+
|
| 202 |
+
def get_github_token():
|
| 203 |
+
"""Get GitHub token from environment variables."""
|
| 204 |
+
token = os.getenv('GITHUB_TOKEN')
|
| 205 |
+
if not token:
|
| 206 |
+
print("Warning: GITHUB_TOKEN not found. API rate limits: 60/hour (authenticated: 5000/hour)")
|
| 207 |
+
return token
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def validate_github_username(identifier):
|
| 211 |
+
"""Verify that a GitHub identifier exists with backoff-aware requests."""
|
| 212 |
+
try:
|
| 213 |
+
token = get_github_token()
|
| 214 |
+
headers = {'Authorization': f'token {token}'} if token else {}
|
| 215 |
+
url = f'https://api.github.com/users/{identifier}'
|
| 216 |
+
response = request_with_backoff('GET', url, headers=headers, max_retries=1)
|
| 217 |
+
if response is None:
|
| 218 |
+
return False, "Validation error: network/rate limit exhausted"
|
| 219 |
+
if response.status_code == 200:
|
| 220 |
+
return True, "Username is valid"
|
| 221 |
+
elif response.status_code == 404:
|
| 222 |
+
return False, "GitHub identifier not found"
|
| 223 |
+
else:
|
| 224 |
+
return False, f"Validation error: HTTP {response.status_code}"
|
| 225 |
+
except Exception as e:
|
| 226 |
+
return False, f"Validation error: {str(e)}"
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def fetch_issues_with_time_partition(base_query, start_date, end_date, headers, issues_by_id, debug_limit=None):
|
| 230 |
+
"""
|
| 231 |
+
Fetch issues within a specific time range using time-based partitioning.
|
| 232 |
+
Recursively splits the time range if hitting the 1000-result limit.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
debug_limit: If set, stops fetching after this many issues (for testing)
|
| 236 |
+
|
| 237 |
+
Returns the number of issues found in this time partition.
|
| 238 |
+
"""
|
| 239 |
+
# Format dates for GitHub search (YYYY-MM-DD)
|
| 240 |
+
start_str = start_date.strftime('%Y-%m-%d')
|
| 241 |
+
end_str = end_date.strftime('%Y-%m-%d')
|
| 242 |
+
|
| 243 |
+
# Add date range to query
|
| 244 |
+
query = f'{base_query} created:{start_str}..{end_str}'
|
| 245 |
+
|
| 246 |
+
print(f" Searching range {start_str} to {end_str}...")
|
| 247 |
+
|
| 248 |
+
page = 1
|
| 249 |
+
per_page = 100
|
| 250 |
+
total_in_partition = 0
|
| 251 |
+
|
| 252 |
+
while True:
|
| 253 |
+
# Check debug limit
|
| 254 |
+
if debug_limit is not None and total_in_partition >= debug_limit:
|
| 255 |
+
print(f" 🐛 DEBUG MODE: Reached limit of {debug_limit} issues, stopping...")
|
| 256 |
+
return total_in_partition
|
| 257 |
+
url = 'https://api.github.com/search/issues'
|
| 258 |
+
params = {
|
| 259 |
+
'q': query,
|
| 260 |
+
'per_page': per_page,
|
| 261 |
+
'page': page,
|
| 262 |
+
'sort': 'created',
|
| 263 |
+
'order': 'asc'
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
try:
|
| 267 |
+
response = request_with_backoff('GET', url, headers=headers, params=params)
|
| 268 |
+
if response is None:
|
| 269 |
+
print(f" Error: retries exhausted for range {start_str} to {end_str}")
|
| 270 |
+
return total_in_partition
|
| 271 |
+
|
| 272 |
+
if response.status_code != 200:
|
| 273 |
+
print(f" Error: HTTP {response.status_code} for range {start_str} to {end_str}")
|
| 274 |
+
return total_in_partition
|
| 275 |
+
|
| 276 |
+
data = response.json()
|
| 277 |
+
total_count = data.get('total_count', 0)
|
| 278 |
+
items = data.get('items', [])
|
| 279 |
+
|
| 280 |
+
if not items:
|
| 281 |
+
break
|
| 282 |
+
|
| 283 |
+
# Add issues to global dict
|
| 284 |
+
for issue in items:
|
| 285 |
+
issue_id = issue.get('id')
|
| 286 |
+
if issue_id and issue_id not in issues_by_id:
|
| 287 |
+
issues_by_id[issue_id] = issue
|
| 288 |
+
total_in_partition += 1
|
| 289 |
+
|
| 290 |
+
# Check if we hit the 1000-result limit
|
| 291 |
+
if total_count > 1000 and page == 10:
|
| 292 |
+
print(f" ⚠️ Hit 1000-result limit ({total_count} total). Splitting time range...")
|
| 293 |
+
|
| 294 |
+
# Calculate midpoint
|
| 295 |
+
time_diff = end_date - start_date
|
| 296 |
+
mid_date = start_date + time_diff / 2
|
| 297 |
+
|
| 298 |
+
# Recursively fetch both halves
|
| 299 |
+
count1 = fetch_issues_with_time_partition(base_query, start_date, mid_date, headers, issues_by_id, debug_limit)
|
| 300 |
+
count2 = fetch_issues_with_time_partition(base_query, mid_date + timedelta(days=1), end_date, headers, issues_by_id, debug_limit)
|
| 301 |
+
|
| 302 |
+
return count1 + count2
|
| 303 |
+
|
| 304 |
+
# Normal pagination: check if there are more pages
|
| 305 |
+
if len(items) < per_page or page >= 10:
|
| 306 |
+
break
|
| 307 |
+
|
| 308 |
+
page += 1
|
| 309 |
+
time.sleep(0.5) # Courtesy delay between pages
|
| 310 |
+
|
| 311 |
+
except Exception as e:
|
| 312 |
+
print(f" Error fetching range {start_str} to {end_str}: {str(e)}")
|
| 313 |
+
return total_in_partition
|
| 314 |
+
|
| 315 |
+
if total_in_partition > 0:
|
| 316 |
+
print(f" ✓ Found {total_in_partition} issues in range {start_str} to {end_str}")
|
| 317 |
+
|
| 318 |
+
return total_in_partition
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def extract_issue_metadata(issue):
|
| 322 |
+
"""
|
| 323 |
+
Extract minimal issue metadata for efficient storage.
|
| 324 |
+
Only keeps essential fields: html_url, created_at, closed_at, state_reason.
|
| 325 |
+
Note: agent_name is not stored as it's inferred from the folder structure.
|
| 326 |
+
|
| 327 |
+
Issue states:
|
| 328 |
+
- state: "open" or "closed"
|
| 329 |
+
- state_reason: "completed" (resolved), "not_planned" (closed as not planned), or None (still open)
|
| 330 |
+
"""
|
| 331 |
+
# Extract dates and state
|
| 332 |
+
created_at = issue.get('created_at')
|
| 333 |
+
closed_at = issue.get('closed_at')
|
| 334 |
+
state = issue.get('state')
|
| 335 |
+
state_reason = issue.get('state_reason')
|
| 336 |
+
|
| 337 |
+
return {
|
| 338 |
+
'html_url': issue.get('html_url'),
|
| 339 |
+
'created_at': created_at,
|
| 340 |
+
'closed_at': closed_at,
|
| 341 |
+
'state': state,
|
| 342 |
+
'state_reason': state_reason
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def fetch_all_issues_metadata(identifier, agent_name, token=None, start_from_date=None, year=None, exclude_dates=None):
|
| 347 |
+
"""
|
| 348 |
+
Fetch issues associated with a GitHub user or bot for the past 6 months.
|
| 349 |
+
Returns lightweight metadata instead of full issue objects.
|
| 350 |
+
|
| 351 |
+
This function employs time-based partitioning to navigate GitHub's 1000-result limit per query.
|
| 352 |
+
It searches using multiple query patterns:
|
| 353 |
+
- is:issue author:{identifier} (issues authored by the bot)
|
| 354 |
+
- is:issue assignee:{identifier} (issues assigned to the bot)
|
| 355 |
+
- is:issue mentions:{identifier} (issues mentioning the bot)
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
identifier: GitHub username or bot identifier
|
| 359 |
+
agent_name: Human-readable name of the agent for metadata purposes
|
| 360 |
+
token: GitHub API token for authentication
|
| 361 |
+
start_from_date: Only fetch issues created after this date (for incremental updates)
|
| 362 |
+
year: Year parameter (deprecated, retained for compatibility but not utilized)
|
| 363 |
+
exclude_dates: Set of date objects to exclude from mining (dates that have already been processed)
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
List of dictionaries containing minimal issue metadata
|
| 367 |
+
"""
|
| 368 |
+
headers = {'Authorization': f'token {token}'} if token else {}
|
| 369 |
+
|
| 370 |
+
# Debug mode: limit issue retrieval for testing
|
| 371 |
+
debug_limit_per_pattern = 10 if DEBUG_MODE else None
|
| 372 |
+
|
| 373 |
+
if DEBUG_MODE:
|
| 374 |
+
print(f"\n🐛 DEBUG MODE ENABLED: Limiting to {debug_limit_per_pattern} issues per query pattern")
|
| 375 |
+
|
| 376 |
+
# Define query patterns for issues:
|
| 377 |
+
# 1) author pattern: issues authored by the identifier
|
| 378 |
+
# 2) assignee pattern: issues assigned to the identifier
|
| 379 |
+
# 3) mentions pattern: issues mentioning the identifier
|
| 380 |
+
stripped_id = identifier.replace('[bot]', '')
|
| 381 |
+
query_patterns = []
|
| 382 |
+
|
| 383 |
+
# Always add author pattern
|
| 384 |
+
query_patterns.append(f'is:issue author:{identifier}')
|
| 385 |
+
|
| 386 |
+
# Add assignee and mentions patterns
|
| 387 |
+
if stripped_id:
|
| 388 |
+
query_patterns.append(f'is:issue assignee:{stripped_id}')
|
| 389 |
+
query_patterns.append(f'is:issue mentions:{stripped_id}')
|
| 390 |
+
|
| 391 |
+
# Use a dict to deduplicate issues by ID
|
| 392 |
+
issues_by_id = {}
|
| 393 |
+
|
| 394 |
+
# Define time range: past 6 months only (or from start_from_date if specified)
|
| 395 |
+
current_time = datetime.now(timezone.utc)
|
| 396 |
+
six_months_ago = current_time - timedelta(days=180) # ~6 months
|
| 397 |
+
|
| 398 |
+
if start_from_date:
|
| 399 |
+
# Use start_from_date but ensure it's not older than 6 months
|
| 400 |
+
start_date = max(start_from_date, six_months_ago)
|
| 401 |
+
else:
|
| 402 |
+
start_date = six_months_ago
|
| 403 |
+
|
| 404 |
+
# End date is current time
|
| 405 |
+
end_date = current_time
|
| 406 |
+
|
| 407 |
+
for query_pattern in query_patterns:
|
| 408 |
+
print(f"\n🔍 Searching with query: {query_pattern}")
|
| 409 |
+
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 410 |
+
|
| 411 |
+
pattern_start_time = time.time()
|
| 412 |
+
initial_count = len(issues_by_id)
|
| 413 |
+
|
| 414 |
+
# Fetch with time partitioning
|
| 415 |
+
issues_found = fetch_issues_with_time_partition(
|
| 416 |
+
query_pattern,
|
| 417 |
+
start_date,
|
| 418 |
+
end_date,
|
| 419 |
+
headers,
|
| 420 |
+
issues_by_id,
|
| 421 |
+
debug_limit_per_pattern
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
pattern_duration = time.time() - pattern_start_time
|
| 425 |
+
new_issues = len(issues_by_id) - initial_count
|
| 426 |
+
|
| 427 |
+
print(f" ✓ Pattern complete: {new_issues} new issues found ({issues_found} total fetched, {len(issues_by_id) - initial_count - (issues_found - new_issues)} duplicates)")
|
| 428 |
+
print(f" ⏱️ Time taken: {pattern_duration:.1f} seconds")
|
| 429 |
+
|
| 430 |
+
# Delay between different query patterns (shorter in debug mode)
|
| 431 |
+
time.sleep(0.2 if DEBUG_MODE else 1.0)
|
| 432 |
+
|
| 433 |
+
# Convert to lightweight metadata
|
| 434 |
+
all_issues = list(issues_by_id.values())
|
| 435 |
+
|
| 436 |
+
# Filter out issues from excluded dates if specified
|
| 437 |
+
if exclude_dates:
|
| 438 |
+
filtered_issues = []
|
| 439 |
+
excluded_count = 0
|
| 440 |
+
for issue in all_issues:
|
| 441 |
+
created_at = issue.get('created_at')
|
| 442 |
+
if created_at:
|
| 443 |
+
try:
|
| 444 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 445 |
+
issue_date = dt.date()
|
| 446 |
+
if issue_date not in exclude_dates:
|
| 447 |
+
filtered_issues.append(issue)
|
| 448 |
+
else:
|
| 449 |
+
excluded_count += 1
|
| 450 |
+
except Exception:
|
| 451 |
+
filtered_issues.append(issue) # Keep issues with unparseable dates
|
| 452 |
+
else:
|
| 453 |
+
filtered_issues.append(issue) # Keep issues without created_at
|
| 454 |
+
|
| 455 |
+
if excluded_count > 0:
|
| 456 |
+
print(f" ⏭️ Skipped {excluded_count} issues from already-mined dates")
|
| 457 |
+
all_issues = filtered_issues
|
| 458 |
+
|
| 459 |
+
if DEBUG_MODE:
|
| 460 |
+
print(f"\n✅ COMPLETE (DEBUG MODE): Found {len(all_issues)} unique issues for {identifier}")
|
| 461 |
+
print(f" Note: In production mode, this would fetch ALL issues")
|
| 462 |
+
else:
|
| 463 |
+
print(f"\n✅ COMPLETE: Found {len(all_issues)} unique issues for {identifier}")
|
| 464 |
+
print(f"📦 Extracting minimal metadata...")
|
| 465 |
+
|
| 466 |
+
metadata_list = [extract_issue_metadata(issue) for issue in all_issues]
|
| 467 |
+
|
| 468 |
+
# Calculate memory savings
|
| 469 |
+
import sys
|
| 470 |
+
original_size = sys.getsizeof(str(all_issues))
|
| 471 |
+
metadata_size = sys.getsizeof(str(metadata_list))
|
| 472 |
+
savings_pct = ((original_size - metadata_size) / original_size * 100) if original_size > 0 else 0
|
| 473 |
+
|
| 474 |
+
print(f"💾 Memory efficiency: {original_size // 1024}KB → {metadata_size // 1024}KB (saved {savings_pct:.1f}%)")
|
| 475 |
+
|
| 476 |
+
return metadata_list
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
def calculate_issue_stats_from_metadata(metadata_list):
|
| 480 |
+
"""
|
| 481 |
+
Calculate statistics from a list of issue metadata (lightweight objects).
|
| 482 |
+
Works with minimal metadata: html_url, created_at, closed_at, state, state_reason.
|
| 483 |
+
|
| 484 |
+
Returns a dictionary with comprehensive issue metrics.
|
| 485 |
+
|
| 486 |
+
Resolved Rate is calculated as:
|
| 487 |
+
resolved issues / total issues * 100
|
| 488 |
+
|
| 489 |
+
Resolved Issues = issues closed as completed (state_reason="completed")
|
| 490 |
+
We do NOT count issues closed as not planned (state_reason="not_planned")
|
| 491 |
+
"""
|
| 492 |
+
total_issues = len(metadata_list)
|
| 493 |
+
|
| 494 |
+
# Count resolved issues - those with state_reason="completed"
|
| 495 |
+
resolved = sum(1 for issue_meta in metadata_list
|
| 496 |
+
if issue_meta.get('state_reason') == 'completed')
|
| 497 |
+
|
| 498 |
+
# Calculate resolved rate
|
| 499 |
+
resolved_rate = (resolved / total_issues * 100) if total_issues > 0 else 0
|
| 500 |
+
|
| 501 |
+
return {
|
| 502 |
+
'total_issues': total_issues,
|
| 503 |
+
'resolved': resolved,
|
| 504 |
+
'resolved_rate': round(resolved_rate, 2),
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
def calculate_monthly_metrics_by_agent():
|
| 509 |
+
"""
|
| 510 |
+
Calculate monthly metrics for all agents for visualization.
|
| 511 |
+
Loads data directly from SWE-Arena/issue_metadata dataset for the current year.
|
| 512 |
+
|
| 513 |
+
Returns:
|
| 514 |
+
dict: {
|
| 515 |
+
'agents': list of agent names,
|
| 516 |
+
'months': list of month labels (e.g., '2025-01'),
|
| 517 |
+
'data': {
|
| 518 |
+
agent_name: {
|
| 519 |
+
'resolved_rates': list of resolved rates by month,
|
| 520 |
+
'total_issues': list of issue counts by month,
|
| 521 |
+
'resolved_issues': list of resolved issue counts by month
|
| 522 |
+
}
|
| 523 |
+
}
|
| 524 |
+
}
|
| 525 |
+
"""
|
| 526 |
+
# Get current year for loading metadata
|
| 527 |
+
current_year = datetime.now().year
|
| 528 |
+
|
| 529 |
+
# Load ALL agents from HuggingFace agents repo
|
| 530 |
+
agents = load_agents_from_hf()
|
| 531 |
+
|
| 532 |
+
# Create mapping from agent_identifier to agent_name
|
| 533 |
+
identifier_to_name = {agent.get('github_identifier'): agent.get('agent_name') for agent in agents if agent.get('github_identifier')}
|
| 534 |
+
|
| 535 |
+
# Load all issue metadata for current year from issue_metadata dataset
|
| 536 |
+
all_metadata = load_issue_metadata_for_year(current_year)
|
| 537 |
+
|
| 538 |
+
if not all_metadata:
|
| 539 |
+
return {'agents': [], 'months': [], 'data': {}}
|
| 540 |
+
|
| 541 |
+
# Group by agent and month
|
| 542 |
+
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 543 |
+
|
| 544 |
+
for issue_meta in all_metadata:
|
| 545 |
+
agent_identifier = issue_meta.get('agent_identifier')
|
| 546 |
+
created_at = issue_meta.get('created_at')
|
| 547 |
+
|
| 548 |
+
if not agent_identifier or not created_at:
|
| 549 |
+
continue
|
| 550 |
+
|
| 551 |
+
# Get agent_name from identifier
|
| 552 |
+
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 553 |
+
|
| 554 |
+
try:
|
| 555 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 556 |
+
month_key = f"{dt.year}-{dt.month:02d}"
|
| 557 |
+
agent_month_data[agent_name][month_key].append(issue_meta)
|
| 558 |
+
except Exception as e:
|
| 559 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 560 |
+
continue
|
| 561 |
+
|
| 562 |
+
# Get all unique months and sort them
|
| 563 |
+
all_months = set()
|
| 564 |
+
for agent_data in agent_month_data.values():
|
| 565 |
+
all_months.update(agent_data.keys())
|
| 566 |
+
months = sorted(list(all_months))
|
| 567 |
+
|
| 568 |
+
# Calculate metrics for each agent and month
|
| 569 |
+
result_data = {}
|
| 570 |
+
for agent_name, month_dict in agent_month_data.items():
|
| 571 |
+
resolved_rates = []
|
| 572 |
+
total_issues_list = []
|
| 573 |
+
resolved_issues_list = []
|
| 574 |
+
|
| 575 |
+
for month in months:
|
| 576 |
+
issues_in_month = month_dict.get(month, [])
|
| 577 |
+
|
| 578 |
+
# Count resolved issues (those with state_reason="completed")
|
| 579 |
+
resolved_count = sum(1 for issue in issues_in_month if issue.get('state_reason') == 'completed')
|
| 580 |
+
|
| 581 |
+
# Total issues created in this month
|
| 582 |
+
total_count = len(issues_in_month)
|
| 583 |
+
|
| 584 |
+
# Calculate resolved rate
|
| 585 |
+
resolved_rate = (resolved_count / total_count * 100) if total_count > 0 else None
|
| 586 |
+
|
| 587 |
+
resolved_rates.append(resolved_rate)
|
| 588 |
+
total_issues_list.append(total_count)
|
| 589 |
+
resolved_issues_list.append(resolved_count)
|
| 590 |
+
|
| 591 |
+
result_data[agent_name] = {
|
| 592 |
+
'resolved_rates': resolved_rates,
|
| 593 |
+
'total_issues': total_issues_list,
|
| 594 |
+
'resolved_issues': resolved_issues_list
|
| 595 |
+
}
|
| 596 |
+
|
| 597 |
+
return {
|
| 598 |
+
'agents': sorted(list(agent_month_data.keys())),
|
| 599 |
+
'months': months,
|
| 600 |
+
'data': result_data
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
|
| 604 |
+
# =============================================================================
|
| 605 |
+
# ISSUE METADATA STORAGE & RETRIEVAL
|
| 606 |
+
# =============================================================================
|
| 607 |
+
|
| 608 |
+
def group_metadata_by_date(metadata_list):
|
| 609 |
+
"""
|
| 610 |
+
Group issue metadata by exact date (year.month.day) for efficient daily storage.
|
| 611 |
+
Returns dict: {(year, month, day): [metadata_list]}
|
| 612 |
+
"""
|
| 613 |
+
grouped = defaultdict(list)
|
| 614 |
+
|
| 615 |
+
for issue_meta in metadata_list:
|
| 616 |
+
created_at = issue_meta.get('created_at')
|
| 617 |
+
if not created_at:
|
| 618 |
+
continue
|
| 619 |
+
|
| 620 |
+
try:
|
| 621 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 622 |
+
key = (dt.year, dt.month, dt.day)
|
| 623 |
+
grouped[key].append(issue_meta)
|
| 624 |
+
except Exception as e:
|
| 625 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 626 |
+
|
| 627 |
+
return dict(grouped)
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
def save_issue_metadata_to_hf(metadata_list, agent_identifier):
|
| 631 |
+
"""
|
| 632 |
+
Save issue metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 633 |
+
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's issues.
|
| 634 |
+
In debug mode, saves to in-memory cache only.
|
| 635 |
+
|
| 636 |
+
This function APPENDS new metadata and DEDUPLICATES by html_url.
|
| 637 |
+
|
| 638 |
+
Args:
|
| 639 |
+
metadata_list: List of issue metadata dictionaries
|
| 640 |
+
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 641 |
+
"""
|
| 642 |
+
# Skip saving to HF in debug mode - use in-memory cache instead
|
| 643 |
+
if DEBUG_MODE:
|
| 644 |
+
global DEBUG_ISSUE_METADATA_CACHE
|
| 645 |
+
# Merge with existing cache, deduplicating by html_url
|
| 646 |
+
existing = {issue['html_url']: issue for issue in DEBUG_ISSUE_METADATA_CACHE[agent_identifier] if issue.get('html_url')}
|
| 647 |
+
new = {issue['html_url']: issue for issue in metadata_list if issue.get('html_url')}
|
| 648 |
+
existing.update(new)
|
| 649 |
+
DEBUG_ISSUE_METADATA_CACHE[agent_identifier] = list(existing.values())
|
| 650 |
+
print(f"🐛 DEBUG MODE: Saved to in-memory cache only ({len(metadata_list)} issues) - NOT saved to HuggingFace")
|
| 651 |
+
return True
|
| 652 |
+
|
| 653 |
+
try:
|
| 654 |
+
token = get_hf_token()
|
| 655 |
+
if not token:
|
| 656 |
+
raise Exception("No HuggingFace token found")
|
| 657 |
+
|
| 658 |
+
api = HfApi()
|
| 659 |
+
|
| 660 |
+
# Group by exact date (year, month, day)
|
| 661 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 662 |
+
|
| 663 |
+
for (issue_year, month, day), day_metadata in grouped.items():
|
| 664 |
+
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 665 |
+
filename = f"{agent_identifier}/{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 666 |
+
local_filename = f"{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 667 |
+
print(f"📤 Uploading {len(day_metadata)} issues to {filename}...")
|
| 668 |
+
|
| 669 |
+
# Download existing file if it exists
|
| 670 |
+
existing_metadata = []
|
| 671 |
+
try:
|
| 672 |
+
file_path = hf_hub_download(
|
| 673 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 674 |
+
filename=filename,
|
| 675 |
+
repo_type="dataset",
|
| 676 |
+
token=token
|
| 677 |
+
)
|
| 678 |
+
existing_metadata = load_jsonl(file_path)
|
| 679 |
+
print(f" Found {len(existing_metadata)} existing issues in {filename}")
|
| 680 |
+
except Exception:
|
| 681 |
+
print(f" No existing file found for {filename}, creating new")
|
| 682 |
+
|
| 683 |
+
# Merge and deduplicate by html_url
|
| 684 |
+
existing_by_url = {meta['html_url']: meta for meta in existing_metadata if meta.get('html_url')}
|
| 685 |
+
new_by_url = {meta['html_url']: meta for meta in day_metadata if meta.get('html_url')}
|
| 686 |
+
|
| 687 |
+
# Update with new data (new data overwrites old)
|
| 688 |
+
existing_by_url.update(new_by_url)
|
| 689 |
+
merged_metadata = list(existing_by_url.values())
|
| 690 |
+
|
| 691 |
+
# Save locally
|
| 692 |
+
save_jsonl(local_filename, merged_metadata)
|
| 693 |
+
|
| 694 |
+
try:
|
| 695 |
+
# Upload to HuggingFace with folder path
|
| 696 |
+
upload_with_retry(
|
| 697 |
+
api=api,
|
| 698 |
+
path_or_fileobj=local_filename,
|
| 699 |
+
path_in_repo=filename,
|
| 700 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 701 |
+
repo_type="dataset",
|
| 702 |
+
token=token
|
| 703 |
+
)
|
| 704 |
+
print(f" ✓ Saved {len(merged_metadata)} total issues to {filename}")
|
| 705 |
+
finally:
|
| 706 |
+
# Always clean up local file, even if upload fails
|
| 707 |
+
if os.path.exists(local_filename):
|
| 708 |
+
os.remove(local_filename)
|
| 709 |
+
|
| 710 |
+
return True
|
| 711 |
+
|
| 712 |
+
except Exception as e:
|
| 713 |
+
print(f"✗ Error saving issue metadata: {str(e)}")
|
| 714 |
+
return False
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
def load_issue_metadata_for_year(year):
|
| 718 |
+
"""
|
| 719 |
+
Load all issue metadata for a specific year from HuggingFace.
|
| 720 |
+
Scans all agent folders and loads daily files matching the year.
|
| 721 |
+
In debug mode, loads from in-memory cache if available.
|
| 722 |
+
|
| 723 |
+
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 724 |
+
|
| 725 |
+
Returns:
|
| 726 |
+
List of dictionaries with 'agent_identifier' added to each issue metadata.
|
| 727 |
+
"""
|
| 728 |
+
# In debug mode, check in-memory cache first
|
| 729 |
+
if DEBUG_MODE and DEBUG_ISSUE_METADATA_CACHE:
|
| 730 |
+
all_metadata = []
|
| 731 |
+
for agent_identifier, metadata_list in DEBUG_ISSUE_METADATA_CACHE.items():
|
| 732 |
+
for issue_meta in metadata_list:
|
| 733 |
+
issue_with_agent = issue_meta.copy()
|
| 734 |
+
issue_with_agent['agent_identifier'] = agent_identifier
|
| 735 |
+
all_metadata.append(issue_with_agent)
|
| 736 |
+
if all_metadata:
|
| 737 |
+
print(f"🐛 DEBUG MODE: Loading issue metadata from in-memory cache ({len(all_metadata)} issues)")
|
| 738 |
+
return all_metadata
|
| 739 |
+
|
| 740 |
+
try:
|
| 741 |
+
api = HfApi()
|
| 742 |
+
token = get_hf_token()
|
| 743 |
+
|
| 744 |
+
# List all files in the repository
|
| 745 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 746 |
+
|
| 747 |
+
# Filter for files matching the year pattern: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 748 |
+
# Extract year from filename
|
| 749 |
+
year_str = str(year)
|
| 750 |
+
year_files = []
|
| 751 |
+
for f in files:
|
| 752 |
+
if f.endswith('.jsonl'):
|
| 753 |
+
parts = f.split('/')
|
| 754 |
+
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
|
| 755 |
+
filename = parts[1]
|
| 756 |
+
if filename.startswith(year_str + '.'):
|
| 757 |
+
year_files.append(f)
|
| 758 |
+
|
| 759 |
+
print(f"📥 Loading issue metadata for {year} ({len(year_files)} daily files across all agents)...")
|
| 760 |
+
|
| 761 |
+
all_metadata = []
|
| 762 |
+
for filename in year_files:
|
| 763 |
+
try:
|
| 764 |
+
# Extract agent_identifier from path (first part)
|
| 765 |
+
# Format: agent_identifier/YYYY.MM.DD.jsonl
|
| 766 |
+
parts = filename.split('/')
|
| 767 |
+
if len(parts) != 2:
|
| 768 |
+
print(f" Warning: Unexpected filename format: {filename}")
|
| 769 |
+
continue
|
| 770 |
+
|
| 771 |
+
agent_identifier = parts[0]
|
| 772 |
+
|
| 773 |
+
file_path = hf_hub_download(
|
| 774 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 775 |
+
filename=filename,
|
| 776 |
+
repo_type="dataset",
|
| 777 |
+
token=token
|
| 778 |
+
)
|
| 779 |
+
day_metadata = load_jsonl(file_path)
|
| 780 |
+
|
| 781 |
+
# Add agent_identifier to each issue metadata for processing
|
| 782 |
+
for issue_meta in day_metadata:
|
| 783 |
+
issue_meta['agent_identifier'] = agent_identifier
|
| 784 |
+
|
| 785 |
+
all_metadata.extend(day_metadata)
|
| 786 |
+
print(f" ✓ Loaded {len(day_metadata)} issues from {filename}")
|
| 787 |
+
except Exception as e:
|
| 788 |
+
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 789 |
+
|
| 790 |
+
print(f"✓ Loaded {len(all_metadata)} total issues for {year}")
|
| 791 |
+
return all_metadata
|
| 792 |
+
|
| 793 |
+
except Exception as e:
|
| 794 |
+
print(f"✗ Error loading issue metadata for {year}: {str(e)}")
|
| 795 |
+
return []
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
def get_latest_issue_date_for_agent(agent_identifier):
|
| 799 |
+
"""
|
| 800 |
+
Get the latest issue creation date for an agent from stored metadata.
|
| 801 |
+
Used for incremental updates - only fetch issues newer than this date.
|
| 802 |
+
|
| 803 |
+
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 804 |
+
|
| 805 |
+
Args:
|
| 806 |
+
agent_identifier: GitHub identifier of the agent
|
| 807 |
+
|
| 808 |
+
Returns:
|
| 809 |
+
datetime or None if no existing issues found.
|
| 810 |
+
"""
|
| 811 |
+
try:
|
| 812 |
+
api = HfApi()
|
| 813 |
+
token = get_hf_token()
|
| 814 |
+
|
| 815 |
+
# List all files in the repository
|
| 816 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 817 |
+
|
| 818 |
+
# Filter for files in this agent's folder
|
| 819 |
+
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 820 |
+
agent_pattern = f"{agent_identifier}/"
|
| 821 |
+
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 822 |
+
|
| 823 |
+
if not agent_files:
|
| 824 |
+
return None
|
| 825 |
+
|
| 826 |
+
# Find latest created_at across all files
|
| 827 |
+
latest_date = None
|
| 828 |
+
for filename in agent_files:
|
| 829 |
+
try:
|
| 830 |
+
file_path = hf_hub_download(
|
| 831 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 832 |
+
filename=filename,
|
| 833 |
+
repo_type="dataset",
|
| 834 |
+
token=token
|
| 835 |
+
)
|
| 836 |
+
metadata = load_jsonl(file_path)
|
| 837 |
+
|
| 838 |
+
for issue in metadata:
|
| 839 |
+
created_at = issue.get('created_at')
|
| 840 |
+
if created_at:
|
| 841 |
+
try:
|
| 842 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 843 |
+
if latest_date is None or dt > latest_date:
|
| 844 |
+
latest_date = dt
|
| 845 |
+
except Exception:
|
| 846 |
+
continue
|
| 847 |
+
except Exception:
|
| 848 |
+
continue
|
| 849 |
+
|
| 850 |
+
return latest_date
|
| 851 |
+
|
| 852 |
+
except Exception:
|
| 853 |
+
return None
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
def get_daily_files_last_n_months(agent_identifier, n_months=6):
|
| 857 |
+
"""
|
| 858 |
+
Get list of daily file paths for an agent from the last N months.
|
| 859 |
+
|
| 860 |
+
Args:
|
| 861 |
+
agent_identifier: GitHub identifier of the agent
|
| 862 |
+
n_months: Number of months to look back (default: 6)
|
| 863 |
+
|
| 864 |
+
Returns:
|
| 865 |
+
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 866 |
+
"""
|
| 867 |
+
try:
|
| 868 |
+
api = HfApi()
|
| 869 |
+
token = get_hf_token()
|
| 870 |
+
|
| 871 |
+
# Calculate date range
|
| 872 |
+
today = datetime.now(timezone.utc)
|
| 873 |
+
n_months_ago = today - timedelta(days=30 * n_months)
|
| 874 |
+
|
| 875 |
+
# List all files in the repository
|
| 876 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 877 |
+
|
| 878 |
+
# Filter for files in this agent's folder
|
| 879 |
+
agent_pattern = f"{agent_identifier}/"
|
| 880 |
+
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 881 |
+
|
| 882 |
+
# Filter by date range (extract date from filename)
|
| 883 |
+
recent_files = []
|
| 884 |
+
for filename in agent_files:
|
| 885 |
+
try:
|
| 886 |
+
# Extract date from filename: YYYY.MM.DD.jsonl
|
| 887 |
+
parts = filename.split('/')
|
| 888 |
+
if len(parts) != 2:
|
| 889 |
+
continue
|
| 890 |
+
|
| 891 |
+
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 892 |
+
date_components = date_part.split('.')
|
| 893 |
+
if len(date_components) != 3:
|
| 894 |
+
continue
|
| 895 |
+
|
| 896 |
+
file_year, file_month, file_day = map(int, date_components)
|
| 897 |
+
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 898 |
+
|
| 899 |
+
# Include if within last n_months
|
| 900 |
+
if n_months_ago <= file_date <= today:
|
| 901 |
+
recent_files.append(filename)
|
| 902 |
+
except Exception:
|
| 903 |
+
continue
|
| 904 |
+
|
| 905 |
+
return recent_files
|
| 906 |
+
|
| 907 |
+
except Exception as e:
|
| 908 |
+
print(f"Error getting daily files: {str(e)}")
|
| 909 |
+
return []
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
def get_already_mined_dates(agent_identifier, n_months=6):
|
| 913 |
+
"""
|
| 914 |
+
Get set of dates that have already been mined for an agent.
|
| 915 |
+
|
| 916 |
+
Args:
|
| 917 |
+
agent_identifier: GitHub identifier of the agent
|
| 918 |
+
n_months: Number of months to look back (default: 6)
|
| 919 |
+
|
| 920 |
+
Returns:
|
| 921 |
+
Set of date objects (datetime.date) that already have data files
|
| 922 |
+
"""
|
| 923 |
+
try:
|
| 924 |
+
api = HfApi()
|
| 925 |
+
|
| 926 |
+
# Calculate date range
|
| 927 |
+
today = datetime.now(timezone.utc)
|
| 928 |
+
n_months_ago = today - timedelta(days=30 * n_months)
|
| 929 |
+
|
| 930 |
+
# List all files in the repository
|
| 931 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 932 |
+
|
| 933 |
+
# Filter for files in this agent's folder
|
| 934 |
+
agent_pattern = f"{agent_identifier}/"
|
| 935 |
+
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 936 |
+
|
| 937 |
+
mined_dates = set()
|
| 938 |
+
for filename in agent_files:
|
| 939 |
+
try:
|
| 940 |
+
# Extract date from filename: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 941 |
+
parts = filename.split('/')
|
| 942 |
+
if len(parts) != 2:
|
| 943 |
+
continue
|
| 944 |
+
|
| 945 |
+
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 946 |
+
date_components = date_part.split('.')
|
| 947 |
+
if len(date_components) != 3:
|
| 948 |
+
continue
|
| 949 |
+
|
| 950 |
+
file_year, file_month, file_day = map(int, date_components)
|
| 951 |
+
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc).date()
|
| 952 |
+
|
| 953 |
+
# Only include dates within the last n_months
|
| 954 |
+
if n_months_ago.date() <= file_date <= today.date():
|
| 955 |
+
mined_dates.add(file_date)
|
| 956 |
+
except Exception as e:
|
| 957 |
+
print(f" Warning: Could not parse date from filename {filename}: {e}")
|
| 958 |
+
continue
|
| 959 |
+
|
| 960 |
+
return mined_dates
|
| 961 |
+
|
| 962 |
+
except Exception as e:
|
| 963 |
+
print(f" Warning: Could not get already-mined dates for {agent_identifier}: {str(e)}")
|
| 964 |
+
return set()
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
def fetch_issue_current_status(issue_url, token):
|
| 968 |
+
"""
|
| 969 |
+
Fetch the current status of a single issue from GitHub API.
|
| 970 |
+
|
| 971 |
+
Args:
|
| 972 |
+
issue_url: Issue HTML URL (e.g., https://github.com/owner/repo/issues/123)
|
| 973 |
+
token: GitHub API token
|
| 974 |
+
|
| 975 |
+
Returns:
|
| 976 |
+
Dictionary with updated state, state_reason, and closed_at, or None if failed
|
| 977 |
+
"""
|
| 978 |
+
try:
|
| 979 |
+
# Convert HTML URL to API URL
|
| 980 |
+
# https://github.com/owner/repo/issues/123 -> https://api.github.com/repos/owner/repo/issues/123
|
| 981 |
+
parts = issue_url.replace('https://github.com/', '').split('/')
|
| 982 |
+
if len(parts) < 4:
|
| 983 |
+
return None
|
| 984 |
+
|
| 985 |
+
owner, repo, issue_word, issue_number = parts[0], parts[1], parts[2], parts[3]
|
| 986 |
+
api_url = f'https://api.github.com/repos/{owner}/{repo}/issues/{issue_number}'
|
| 987 |
+
|
| 988 |
+
headers = {'Authorization': f'token {token}'} if token else {}
|
| 989 |
+
response = request_with_backoff('GET', api_url, headers=headers, max_retries=3)
|
| 990 |
+
|
| 991 |
+
if response is None or response.status_code != 200:
|
| 992 |
+
return None
|
| 993 |
+
|
| 994 |
+
issue_data = response.json()
|
| 995 |
+
state = issue_data.get('state')
|
| 996 |
+
state_reason = issue_data.get('state_reason')
|
| 997 |
+
closed_at = issue_data.get('closed_at')
|
| 998 |
+
|
| 999 |
+
return {
|
| 1000 |
+
'state': state,
|
| 1001 |
+
'state_reason': state_reason,
|
| 1002 |
+
'closed_at': closed_at
|
| 1003 |
+
}
|
| 1004 |
+
|
| 1005 |
+
except Exception as e:
|
| 1006 |
+
print(f" Error fetching issue status for {issue_url}: {str(e)}")
|
| 1007 |
+
return None
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
def refresh_open_issues_for_agent(agent_identifier, token):
|
| 1011 |
+
"""
|
| 1012 |
+
Refresh status for all open issues from the last 6 months for an agent.
|
| 1013 |
+
Only updates issues that are still open (state="open" or no state_reason).
|
| 1014 |
+
|
| 1015 |
+
This implements the smart update strategy:
|
| 1016 |
+
- Skip issues that are already closed/resolved
|
| 1017 |
+
- Fetch current status for open issues
|
| 1018 |
+
- Update and save back to daily files
|
| 1019 |
+
|
| 1020 |
+
Args:
|
| 1021 |
+
agent_identifier: GitHub identifier of the agent
|
| 1022 |
+
token: GitHub API token
|
| 1023 |
+
|
| 1024 |
+
Returns:
|
| 1025 |
+
Tuple: (total_checked, updated_count)
|
| 1026 |
+
"""
|
| 1027 |
+
print(f"\n🔄 Refreshing open issues for {agent_identifier} (last 6 months)...")
|
| 1028 |
+
|
| 1029 |
+
try:
|
| 1030 |
+
# Get daily files from last 6 months
|
| 1031 |
+
recent_files = get_daily_files_last_n_months(agent_identifier, n_months=6)
|
| 1032 |
+
|
| 1033 |
+
if not recent_files:
|
| 1034 |
+
print(f" No recent files found for {agent_identifier}")
|
| 1035 |
+
return (0, 0)
|
| 1036 |
+
|
| 1037 |
+
print(f" Found {len(recent_files)} daily files to check")
|
| 1038 |
+
|
| 1039 |
+
total_checked = 0
|
| 1040 |
+
updated_count = 0
|
| 1041 |
+
|
| 1042 |
+
# Process each file
|
| 1043 |
+
for filename in recent_files:
|
| 1044 |
+
try:
|
| 1045 |
+
# Download file
|
| 1046 |
+
file_path = hf_hub_download(
|
| 1047 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 1048 |
+
filename=filename,
|
| 1049 |
+
repo_type="dataset",
|
| 1050 |
+
token=get_hf_token()
|
| 1051 |
+
)
|
| 1052 |
+
issues = load_jsonl(file_path)
|
| 1053 |
+
|
| 1054 |
+
if not issues:
|
| 1055 |
+
continue
|
| 1056 |
+
|
| 1057 |
+
updated_issues = []
|
| 1058 |
+
file_had_updates = False
|
| 1059 |
+
|
| 1060 |
+
# Check each issue
|
| 1061 |
+
for issue in issues:
|
| 1062 |
+
# Skip if already closed (has a state_reason)
|
| 1063 |
+
if issue.get('state') == 'closed' and issue.get('state_reason'):
|
| 1064 |
+
updated_issues.append(issue)
|
| 1065 |
+
continue
|
| 1066 |
+
|
| 1067 |
+
# Issue is open, fetch current status
|
| 1068 |
+
total_checked += 1
|
| 1069 |
+
issue_url = issue.get('html_url')
|
| 1070 |
+
|
| 1071 |
+
if not issue_url:
|
| 1072 |
+
updated_issues.append(issue)
|
| 1073 |
+
continue
|
| 1074 |
+
|
| 1075 |
+
current_status = fetch_issue_current_status(issue_url, token)
|
| 1076 |
+
|
| 1077 |
+
if current_status:
|
| 1078 |
+
# Check if status changed (now closed)
|
| 1079 |
+
if current_status['state'] == 'closed':
|
| 1080 |
+
print(f" ✓ Issue status changed: {issue_url}")
|
| 1081 |
+
issue['state'] = current_status['state']
|
| 1082 |
+
issue['state_reason'] = current_status['state_reason']
|
| 1083 |
+
issue['closed_at'] = current_status['closed_at']
|
| 1084 |
+
updated_count += 1
|
| 1085 |
+
file_had_updates = True
|
| 1086 |
+
|
| 1087 |
+
updated_issues.append(issue)
|
| 1088 |
+
time.sleep(0.1) # Rate limiting courtesy delay
|
| 1089 |
+
|
| 1090 |
+
# Save file if there were updates
|
| 1091 |
+
if file_had_updates:
|
| 1092 |
+
# Extract filename components for local save
|
| 1093 |
+
parts = filename.split('/')
|
| 1094 |
+
local_filename = parts[-1] # Just YYYY.MM.DD.jsonl
|
| 1095 |
+
|
| 1096 |
+
# Save locally
|
| 1097 |
+
save_jsonl(local_filename, updated_issues)
|
| 1098 |
+
|
| 1099 |
+
try:
|
| 1100 |
+
# Upload back to HuggingFace
|
| 1101 |
+
api = HfApi()
|
| 1102 |
+
upload_with_retry(
|
| 1103 |
+
api=api,
|
| 1104 |
+
path_or_fileobj=local_filename,
|
| 1105 |
+
path_in_repo=filename,
|
| 1106 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 1107 |
+
repo_type="dataset",
|
| 1108 |
+
token=get_hf_token()
|
| 1109 |
+
)
|
| 1110 |
+
print(f" 💾 Updated {filename}")
|
| 1111 |
+
finally:
|
| 1112 |
+
# Always clean up local file, even if upload fails
|
| 1113 |
+
if os.path.exists(local_filename):
|
| 1114 |
+
os.remove(local_filename)
|
| 1115 |
+
|
| 1116 |
+
except Exception as e:
|
| 1117 |
+
print(f" Warning: Could not process {filename}: {str(e)}")
|
| 1118 |
+
continue
|
| 1119 |
+
|
| 1120 |
+
print(f" ✅ Refresh complete: {total_checked} open issues checked, {updated_count} updated")
|
| 1121 |
+
return (total_checked, updated_count)
|
| 1122 |
+
|
| 1123 |
+
except Exception as e:
|
| 1124 |
+
print(f" ✗ Error refreshing issues for {agent_identifier}: {str(e)}")
|
| 1125 |
+
return (0, 0)
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
# =============================================================================
|
| 1129 |
+
# HUGGINGFACE DATASET OPERATIONS
|
| 1130 |
+
# =============================================================================
|
| 1131 |
+
|
| 1132 |
+
def load_agents_from_hf():
|
| 1133 |
+
"""Load all agent metadata JSON files from HuggingFace dataset."""
|
| 1134 |
+
try:
|
| 1135 |
+
api = HfApi()
|
| 1136 |
+
agents = []
|
| 1137 |
+
|
| 1138 |
+
# List all files in the repository
|
| 1139 |
+
files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
|
| 1140 |
+
|
| 1141 |
+
# Filter for JSON files only
|
| 1142 |
+
json_files = [f for f in files if f.endswith('.json')]
|
| 1143 |
+
|
| 1144 |
+
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 1145 |
+
|
| 1146 |
+
# Download and parse each JSON file
|
| 1147 |
+
for json_file in json_files:
|
| 1148 |
+
try:
|
| 1149 |
+
file_path = hf_hub_download(
|
| 1150 |
+
repo_id=AGENTS_REPO,
|
| 1151 |
+
filename=json_file,
|
| 1152 |
+
repo_type="dataset"
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
with open(file_path, 'r') as f:
|
| 1156 |
+
agent_data = json.load(f)
|
| 1157 |
+
agents.append(agent_data)
|
| 1158 |
+
|
| 1159 |
+
except Exception as e:
|
| 1160 |
+
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 1161 |
+
continue
|
| 1162 |
+
|
| 1163 |
+
print(f"✓ Loaded {len(agents)} agents from HuggingFace")
|
| 1164 |
+
return agents
|
| 1165 |
+
|
| 1166 |
+
except Exception as e:
|
| 1167 |
+
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 1168 |
+
return None
|
| 1169 |
+
|
| 1170 |
+
|
| 1171 |
+
def load_leaderboard_dataset():
|
| 1172 |
+
"""Load leaderboard data from HuggingFace dataset for current year.
|
| 1173 |
+
In debug mode, loads from in-memory cache if available."""
|
| 1174 |
+
# In debug mode, check in-memory cache first
|
| 1175 |
+
if DEBUG_MODE and DEBUG_LEADERBOARD_CACHE:
|
| 1176 |
+
print(f"🐛 DEBUG MODE: Loading leaderboard from in-memory cache ({len(DEBUG_LEADERBOARD_CACHE)} entries)")
|
| 1177 |
+
return list(DEBUG_LEADERBOARD_CACHE.values())
|
| 1178 |
+
|
| 1179 |
+
try:
|
| 1180 |
+
year = datetime.now().year
|
| 1181 |
+
filename = f"{year}.csv"
|
| 1182 |
+
|
| 1183 |
+
# Try to download the CSV file for current year
|
| 1184 |
+
file_path = hf_hub_download(
|
| 1185 |
+
repo_id=LEADERBOARD_REPO,
|
| 1186 |
+
filename=filename,
|
| 1187 |
+
repo_type="dataset"
|
| 1188 |
+
)
|
| 1189 |
+
|
| 1190 |
+
# Load CSV into list of dicts
|
| 1191 |
+
df = pd.read_csv(file_path)
|
| 1192 |
+
data = df.to_dict('records')
|
| 1193 |
+
print(f"✓ Loaded {len(data)} entries from {filename}")
|
| 1194 |
+
return data
|
| 1195 |
+
|
| 1196 |
+
except Exception as e:
|
| 1197 |
+
print(f"Could not load leaderboard dataset for year {datetime.now().year}: {str(e)}")
|
| 1198 |
+
return None
|
| 1199 |
+
|
| 1200 |
+
|
| 1201 |
+
def get_hf_token():
|
| 1202 |
+
"""Get HuggingFace token from environment variables."""
|
| 1203 |
+
token = os.getenv('HF_TOKEN')
|
| 1204 |
+
if not token:
|
| 1205 |
+
print("Warning: HF_TOKEN not found in environment variables")
|
| 1206 |
+
return token
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 1210 |
+
"""
|
| 1211 |
+
Upload file to HuggingFace with exponential backoff retry logic.
|
| 1212 |
+
|
| 1213 |
+
Args:
|
| 1214 |
+
api: HfApi instance
|
| 1215 |
+
path_or_fileobj: Local file path to upload
|
| 1216 |
+
path_in_repo: Target path in the repository
|
| 1217 |
+
repo_id: Repository ID
|
| 1218 |
+
repo_type: Type of repository (e.g., "dataset")
|
| 1219 |
+
token: HuggingFace token
|
| 1220 |
+
max_retries: Maximum number of retry attempts
|
| 1221 |
+
|
| 1222 |
+
Returns:
|
| 1223 |
+
True if upload succeeded, raises exception if all retries failed
|
| 1224 |
+
"""
|
| 1225 |
+
delay = 2.0 # Initial delay in seconds
|
| 1226 |
+
|
| 1227 |
+
for attempt in range(max_retries):
|
| 1228 |
+
try:
|
| 1229 |
+
api.upload_file(
|
| 1230 |
+
path_or_fileobj=path_or_fileobj,
|
| 1231 |
+
path_in_repo=path_in_repo,
|
| 1232 |
+
repo_id=repo_id,
|
| 1233 |
+
repo_type=repo_type,
|
| 1234 |
+
token=token
|
| 1235 |
+
)
|
| 1236 |
+
if attempt > 0:
|
| 1237 |
+
print(f" ✓ Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 1238 |
+
return True
|
| 1239 |
+
|
| 1240 |
+
except Exception as e:
|
| 1241 |
+
if attempt < max_retries - 1:
|
| 1242 |
+
wait_time = delay + random.uniform(0, 1.0)
|
| 1243 |
+
print(f" ⚠️ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 1244 |
+
print(f" ⏳ Retrying in {wait_time:.1f} seconds...")
|
| 1245 |
+
time.sleep(wait_time)
|
| 1246 |
+
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 1247 |
+
else:
|
| 1248 |
+
print(f" ✗ Upload failed after {max_retries} attempts: {str(e)}")
|
| 1249 |
+
raise
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
def save_agent_to_hf(data):
|
| 1253 |
+
"""Save a new agent to HuggingFace dataset as {identifier}.json in root."""
|
| 1254 |
+
try:
|
| 1255 |
+
api = HfApi()
|
| 1256 |
+
token = get_hf_token()
|
| 1257 |
+
|
| 1258 |
+
if not token:
|
| 1259 |
+
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
|
| 1260 |
+
|
| 1261 |
+
identifier = data['github_identifier']
|
| 1262 |
+
filename = f"{identifier}.json"
|
| 1263 |
+
|
| 1264 |
+
# Save locally first
|
| 1265 |
+
with open(filename, 'w') as f:
|
| 1266 |
+
json.dump(data, f, indent=2)
|
| 1267 |
+
|
| 1268 |
+
try:
|
| 1269 |
+
# Upload to HuggingFace (root directory)
|
| 1270 |
+
upload_with_retry(
|
| 1271 |
+
api=api,
|
| 1272 |
+
path_or_fileobj=filename,
|
| 1273 |
+
path_in_repo=filename,
|
| 1274 |
+
repo_id=AGENTS_REPO,
|
| 1275 |
+
repo_type="dataset",
|
| 1276 |
+
token=token
|
| 1277 |
+
)
|
| 1278 |
+
print(f"✓ Saved agent to HuggingFace: {filename}")
|
| 1279 |
+
return True
|
| 1280 |
+
finally:
|
| 1281 |
+
# Always clean up local file, even if upload fails
|
| 1282 |
+
if os.path.exists(filename):
|
| 1283 |
+
os.remove(filename)
|
| 1284 |
+
|
| 1285 |
+
except Exception as e:
|
| 1286 |
+
print(f"✗ Error saving agent: {str(e)}")
|
| 1287 |
+
return False
|
| 1288 |
+
|
| 1289 |
+
|
| 1290 |
+
def save_leaderboard_to_hf(cache_dict):
|
| 1291 |
+
"""Save complete leaderboard to HuggingFace dataset as CSV.
|
| 1292 |
+
In debug mode, saves to in-memory cache only."""
|
| 1293 |
+
# Skip saving in debug mode - use in-memory cache instead
|
| 1294 |
+
if DEBUG_MODE:
|
| 1295 |
+
global DEBUG_LEADERBOARD_CACHE
|
| 1296 |
+
DEBUG_LEADERBOARD_CACHE = cache_dict.copy()
|
| 1297 |
+
data_list = dict_to_cache(cache_dict)
|
| 1298 |
+
print(f"🐛 DEBUG MODE: Saved to in-memory cache only ({len(data_list)} entries) - NOT saved to HuggingFace")
|
| 1299 |
+
return True
|
| 1300 |
+
|
| 1301 |
+
try:
|
| 1302 |
+
token = get_hf_token()
|
| 1303 |
+
if not token:
|
| 1304 |
+
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
|
| 1305 |
+
|
| 1306 |
+
# Convert to DataFrame
|
| 1307 |
+
data_list = dict_to_cache(cache_dict)
|
| 1308 |
+
df = pd.DataFrame(data_list)
|
| 1309 |
+
|
| 1310 |
+
# Save to CSV with year as filename
|
| 1311 |
+
year = datetime.now().year
|
| 1312 |
+
filename = f"{year}.csv"
|
| 1313 |
+
df.to_csv(filename, index=False)
|
| 1314 |
+
|
| 1315 |
+
try:
|
| 1316 |
+
# Upload to HuggingFace
|
| 1317 |
+
api = HfApi()
|
| 1318 |
+
upload_with_retry(
|
| 1319 |
+
api=api,
|
| 1320 |
+
path_or_fileobj=filename,
|
| 1321 |
+
path_in_repo=filename,
|
| 1322 |
+
repo_id=LEADERBOARD_REPO,
|
| 1323 |
+
repo_type="dataset",
|
| 1324 |
+
token=token
|
| 1325 |
+
)
|
| 1326 |
+
print(f"✓ Saved leaderboard to HuggingFace as {filename} ({len(data_list)} entries)")
|
| 1327 |
+
return True
|
| 1328 |
+
finally:
|
| 1329 |
+
# Always clean up local file, even if upload fails
|
| 1330 |
+
if os.path.exists(filename):
|
| 1331 |
+
os.remove(filename)
|
| 1332 |
+
|
| 1333 |
+
except Exception as e:
|
| 1334 |
+
print(f"✗ Error saving leaderboard: {str(e)}")
|
| 1335 |
+
return False
|
| 1336 |
+
|
| 1337 |
+
|
| 1338 |
+
# =============================================================================
|
| 1339 |
+
# DATA MANAGEMENT
|
| 1340 |
+
# =============================================================================
|
| 1341 |
+
|
| 1342 |
+
def update_all_agents_incremental():
|
| 1343 |
+
"""
|
| 1344 |
+
Memory-efficient incremental update of issue statistics for all agents.
|
| 1345 |
+
|
| 1346 |
+
Strategy:
|
| 1347 |
+
1. For each agent, load existing data from SWE-Arena/issue_metadata
|
| 1348 |
+
2. Identify already-mined dates (based on filename: YYYY.MM.DD.jsonl)
|
| 1349 |
+
3. Only fetch issues from dates that haven't been mined yet (within last 6 months)
|
| 1350 |
+
4. If no data exists at all, mine everything from scratch
|
| 1351 |
+
5. Store minimal metadata (not full issue objects) to avoid storage limits
|
| 1352 |
+
6. Construct leaderboard from ALL stored metadata (last 6 months)
|
| 1353 |
+
|
| 1354 |
+
Returns dictionary of all agent data with current stats.
|
| 1355 |
+
"""
|
| 1356 |
+
token = get_github_token()
|
| 1357 |
+
current_year = datetime.now().year
|
| 1358 |
+
|
| 1359 |
+
# Load agent metadata from HuggingFace
|
| 1360 |
+
agents = load_agents_from_hf()
|
| 1361 |
+
if not agents:
|
| 1362 |
+
print("No agents found in HuggingFace dataset")
|
| 1363 |
+
return {}
|
| 1364 |
+
|
| 1365 |
+
cache_dict = {}
|
| 1366 |
+
|
| 1367 |
+
# Update each agent
|
| 1368 |
+
for agent in agents:
|
| 1369 |
+
identifier = agent.get('github_identifier')
|
| 1370 |
+
agent_name = agent.get('agent_name', 'Unknown')
|
| 1371 |
+
|
| 1372 |
+
if not identifier:
|
| 1373 |
+
print(f"Warning: Skipping agent without identifier: {agent}")
|
| 1374 |
+
continue
|
| 1375 |
+
|
| 1376 |
+
try:
|
| 1377 |
+
print(f"\n{'='*80}")
|
| 1378 |
+
print(f"Processing: {agent_name} ({identifier})")
|
| 1379 |
+
print(f"{'='*80}")
|
| 1380 |
+
|
| 1381 |
+
# Get already-mined dates for this agent (last 6 months)
|
| 1382 |
+
already_mined_dates = get_already_mined_dates(identifier, n_months=6)
|
| 1383 |
+
|
| 1384 |
+
if already_mined_dates:
|
| 1385 |
+
print(f"📅 Found {len(already_mined_dates)} already-mined dates")
|
| 1386 |
+
print(f" Skipping these dates and fetching only new data...")
|
| 1387 |
+
# Fetch only issues from dates not yet mined
|
| 1388 |
+
new_metadata = fetch_all_issues_metadata(
|
| 1389 |
+
identifier,
|
| 1390 |
+
agent_name,
|
| 1391 |
+
token,
|
| 1392 |
+
start_from_date=None, # Use full 6-month range
|
| 1393 |
+
exclude_dates=already_mined_dates # But exclude already-mined dates
|
| 1394 |
+
)
|
| 1395 |
+
else:
|
| 1396 |
+
print(f"📅 No existing data found. Mining everything from scratch...")
|
| 1397 |
+
# Mine everything from scratch (full 6-month range)
|
| 1398 |
+
new_metadata = fetch_all_issues_metadata(
|
| 1399 |
+
identifier,
|
| 1400 |
+
agent_name,
|
| 1401 |
+
token,
|
| 1402 |
+
start_from_date=None
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
if new_metadata:
|
| 1406 |
+
# Save new metadata to HuggingFace (organized by agent_identifier/YYYY.MM.DD.jsonl)
|
| 1407 |
+
print(f"💾 Saving {len(new_metadata)} new issue records...")
|
| 1408 |
+
save_issue_metadata_to_hf(new_metadata, identifier)
|
| 1409 |
+
else:
|
| 1410 |
+
print(f" No new issues to save")
|
| 1411 |
+
|
| 1412 |
+
# Load ALL metadata for current year to calculate stats (aggregates entire last 6 months)
|
| 1413 |
+
print(f"📊 Calculating statistics from ALL stored metadata (last 6 months)...")
|
| 1414 |
+
all_year_metadata = load_issue_metadata_for_year(current_year)
|
| 1415 |
+
|
| 1416 |
+
# Filter for this specific agent
|
| 1417 |
+
agent_metadata = [issue for issue in all_year_metadata if issue.get('agent_identifier') == identifier]
|
| 1418 |
+
|
| 1419 |
+
# Calculate stats from metadata
|
| 1420 |
+
stats = calculate_issue_stats_from_metadata(agent_metadata)
|
| 1421 |
+
|
| 1422 |
+
# Merge metadata with stats
|
| 1423 |
+
cache_dict[identifier] = {
|
| 1424 |
+
'agent_name': agent_name,
|
| 1425 |
+
'organization': agent.get('organization', 'Unknown'),
|
| 1426 |
+
'github_identifier': identifier,
|
| 1427 |
+
**stats
|
| 1428 |
+
}
|
| 1429 |
+
|
| 1430 |
+
print(f"✓ Updated {identifier}: {stats['total_issues']} issues, {stats['resolved_rate']}% resolved")
|
| 1431 |
+
|
| 1432 |
+
except Exception as e:
|
| 1433 |
+
print(f"✗ Error updating {identifier}: {str(e)}")
|
| 1434 |
+
import traceback
|
| 1435 |
+
traceback.print_exc()
|
| 1436 |
+
continue
|
| 1437 |
+
|
| 1438 |
+
return cache_dict
|
| 1439 |
+
|
| 1440 |
+
|
| 1441 |
+
def construct_leaderboard_from_metadata():
|
| 1442 |
+
"""
|
| 1443 |
+
Construct leaderboard from stored issue metadata instead of fetching all issues.
|
| 1444 |
+
Much more memory-efficient and faster.
|
| 1445 |
+
|
| 1446 |
+
Returns dictionary of agent stats.
|
| 1447 |
+
"""
|
| 1448 |
+
print("📊 Constructing leaderboard from issue metadata...")
|
| 1449 |
+
current_year = datetime.now().year
|
| 1450 |
+
|
| 1451 |
+
# Load agents
|
| 1452 |
+
agents = load_agents_from_hf()
|
| 1453 |
+
if not agents:
|
| 1454 |
+
print("No agents found")
|
| 1455 |
+
return {}
|
| 1456 |
+
|
| 1457 |
+
# Load all issue metadata for current year
|
| 1458 |
+
all_metadata = load_issue_metadata_for_year(current_year)
|
| 1459 |
+
|
| 1460 |
+
cache_dict = {}
|
| 1461 |
+
|
| 1462 |
+
for agent in agents:
|
| 1463 |
+
identifier = agent.get('github_identifier')
|
| 1464 |
+
agent_name = agent.get('agent_name', 'Unknown')
|
| 1465 |
+
|
| 1466 |
+
# Filter metadata for this agent
|
| 1467 |
+
agent_metadata = [issue for issue in all_metadata if issue.get('agent_identifier') == identifier]
|
| 1468 |
+
|
| 1469 |
+
# Calculate stats
|
| 1470 |
+
stats = calculate_issue_stats_from_metadata(agent_metadata)
|
| 1471 |
+
|
| 1472 |
+
cache_dict[identifier] = {
|
| 1473 |
+
'agent_name': agent_name,
|
| 1474 |
+
'organization': agent.get('organization', 'Unknown'),
|
| 1475 |
+
'github_identifier': identifier,
|
| 1476 |
+
**stats
|
| 1477 |
+
}
|
| 1478 |
+
|
| 1479 |
+
return cache_dict
|
| 1480 |
+
|
| 1481 |
+
|
| 1482 |
+
def initialize_data():
|
| 1483 |
+
"""
|
| 1484 |
+
Initialize data on application startup.
|
| 1485 |
+
Priority: 1) Leaderboard dataset, 2) Issue metadata (if available), 3) Full GitHub mining
|
| 1486 |
+
|
| 1487 |
+
In DEBUG MODE:
|
| 1488 |
+
- If no data available, automatically mine up to 10 issues per query per agent
|
| 1489 |
+
- Does NOT save to HuggingFace datasets
|
| 1490 |
+
"""
|
| 1491 |
+
print("🚀 Initializing leaderboard data...")
|
| 1492 |
+
|
| 1493 |
+
# Try loading existing leaderboard
|
| 1494 |
+
leaderboard_data = load_leaderboard_dataset()
|
| 1495 |
+
if leaderboard_data:
|
| 1496 |
+
print("✓ Initialized from leaderboard dataset")
|
| 1497 |
+
return
|
| 1498 |
+
|
| 1499 |
+
# Try constructing from issue metadata (fast, memory-efficient)
|
| 1500 |
+
try:
|
| 1501 |
+
cache_dict = construct_leaderboard_from_metadata()
|
| 1502 |
+
# Check if there's actually meaningful data (at least one agent with issues)
|
| 1503 |
+
has_data = any(entry.get('total_issues', 0) > 0 for entry in cache_dict.values())
|
| 1504 |
+
if cache_dict and has_data:
|
| 1505 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1506 |
+
print("✓ Initialized from issue metadata")
|
| 1507 |
+
return
|
| 1508 |
+
except Exception as e:
|
| 1509 |
+
print(f"Could not construct from metadata: {e}")
|
| 1510 |
+
|
| 1511 |
+
# If in debug mode and no data available, mine immediately
|
| 1512 |
+
if DEBUG_MODE:
|
| 1513 |
+
print("\n🐛 DEBUG MODE: No data available, mining immediately (up to 10 issues per query per agent)...")
|
| 1514 |
+
agents = load_agents_from_hf()
|
| 1515 |
+
if agents:
|
| 1516 |
+
print(f"✓ Loaded {len(agents)} agents from HuggingFace")
|
| 1517 |
+
print("⛏️ Mining GitHub data in debug mode (limited to 10 issues per query)...")
|
| 1518 |
+
cache_dict = update_all_agents_incremental()
|
| 1519 |
+
if cache_dict:
|
| 1520 |
+
# In debug mode, this won't actually save to HF
|
| 1521 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1522 |
+
print("✓ Debug mining complete (data NOT saved to HuggingFace)")
|
| 1523 |
+
return
|
| 1524 |
+
else:
|
| 1525 |
+
print("⚠️ No agents found. Waiting for first submission...")
|
| 1526 |
+
return
|
| 1527 |
+
|
| 1528 |
+
# Production mode: Fallback to full incremental mining from GitHub
|
| 1529 |
+
agents = load_agents_from_hf()
|
| 1530 |
+
if agents:
|
| 1531 |
+
print(f"✓ Loaded {len(agents)} agents from HuggingFace")
|
| 1532 |
+
print("⛏️ Mining GitHub data (this may take a while)...")
|
| 1533 |
+
cache_dict = update_all_agents_incremental()
|
| 1534 |
+
if cache_dict:
|
| 1535 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1536 |
+
return
|
| 1537 |
+
|
| 1538 |
+
# No data available
|
| 1539 |
+
print("⚠️ No data sources available. Waiting for first submission...")
|
| 1540 |
+
|
| 1541 |
+
|
| 1542 |
+
# =============================================================================
|
| 1543 |
+
# UI FUNCTIONS
|
| 1544 |
+
# =============================================================================
|
| 1545 |
+
|
| 1546 |
+
def create_monthly_metrics_plot():
|
| 1547 |
+
"""
|
| 1548 |
+
Create a Plotly figure with dual y-axes showing:
|
| 1549 |
+
- Left y-axis: Resolved Rate (%) as line curves
|
| 1550 |
+
- Right y-axis: Total Issues created as bar charts
|
| 1551 |
+
|
| 1552 |
+
Each agent gets a unique color for both their line and bars.
|
| 1553 |
+
"""
|
| 1554 |
+
metrics = calculate_monthly_metrics_by_agent()
|
| 1555 |
+
|
| 1556 |
+
if not metrics['agents'] or not metrics['months']:
|
| 1557 |
+
# Return an empty figure with a message
|
| 1558 |
+
fig = go.Figure()
|
| 1559 |
+
fig.add_annotation(
|
| 1560 |
+
text="No data available for visualization",
|
| 1561 |
+
xref="paper", yref="paper",
|
| 1562 |
+
x=0.5, y=0.5, showarrow=False,
|
| 1563 |
+
font=dict(size=16)
|
| 1564 |
+
)
|
| 1565 |
+
fig.update_layout(
|
| 1566 |
+
title=None,
|
| 1567 |
+
xaxis_title=None,
|
| 1568 |
+
height=500
|
| 1569 |
+
)
|
| 1570 |
+
return fig
|
| 1571 |
+
|
| 1572 |
+
# Create figure with secondary y-axis
|
| 1573 |
+
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 1574 |
+
|
| 1575 |
+
# Define colors for agents (using a color palette)
|
| 1576 |
+
colors = [
|
| 1577 |
+
'#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
|
| 1578 |
+
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'
|
| 1579 |
+
]
|
| 1580 |
+
|
| 1581 |
+
agents = metrics['agents']
|
| 1582 |
+
months = metrics['months']
|
| 1583 |
+
data = metrics['data']
|
| 1584 |
+
|
| 1585 |
+
# Add traces for each agent
|
| 1586 |
+
for idx, agent_name in enumerate(agents):
|
| 1587 |
+
color = colors[idx % len(colors)]
|
| 1588 |
+
agent_data = data[agent_name]
|
| 1589 |
+
|
| 1590 |
+
# Add line trace for resolved rate (left y-axis)
|
| 1591 |
+
resolved_rates = agent_data['resolved_rates']
|
| 1592 |
+
# Filter out None values for plotting
|
| 1593 |
+
x_resolved = [month for month, rate in zip(months, resolved_rates) if rate is not None]
|
| 1594 |
+
y_resolved = [rate for rate in resolved_rates if rate is not None]
|
| 1595 |
+
|
| 1596 |
+
if x_resolved and y_resolved: # Only add trace if there's data
|
| 1597 |
+
fig.add_trace(
|
| 1598 |
+
go.Scatter(
|
| 1599 |
+
x=x_resolved,
|
| 1600 |
+
y=y_resolved,
|
| 1601 |
+
name=agent_name,
|
| 1602 |
+
mode='lines+markers',
|
| 1603 |
+
line=dict(color=color, width=2),
|
| 1604 |
+
marker=dict(size=6),
|
| 1605 |
+
legendgroup=agent_name,
|
| 1606 |
+
showlegend=True,
|
| 1607 |
+
hovertemplate='<b>%{fullData.name}</b><br>' +
|
| 1608 |
+
'Month: %{x}<br>' +
|
| 1609 |
+
'Resolved Rate: %{y:.2f}%<br>' +
|
| 1610 |
+
'<extra></extra>'
|
| 1611 |
+
),
|
| 1612 |
+
secondary_y=False
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
# Add bar trace for total issues (right y-axis)
|
| 1616 |
+
# Only show bars for months where agent has issues
|
| 1617 |
+
x_bars = []
|
| 1618 |
+
y_bars = []
|
| 1619 |
+
for month, count in zip(months, agent_data['total_issues']):
|
| 1620 |
+
if count > 0: # Only include months with issues
|
| 1621 |
+
x_bars.append(month)
|
| 1622 |
+
y_bars.append(count)
|
| 1623 |
+
|
| 1624 |
+
if x_bars and y_bars: # Only add trace if there's data
|
| 1625 |
+
fig.add_trace(
|
| 1626 |
+
go.Bar(
|
| 1627 |
+
x=x_bars,
|
| 1628 |
+
y=y_bars,
|
| 1629 |
+
name=f"{agent_name} (Issues)",
|
| 1630 |
+
marker=dict(color=color, opacity=0.6),
|
| 1631 |
+
legendgroup=agent_name,
|
| 1632 |
+
showlegend=False, # Don't show in legend (already shown for line)
|
| 1633 |
+
hovertemplate='<b>%{fullData.name}</b><br>' +
|
| 1634 |
+
'Month: %{x}<br>' +
|
| 1635 |
+
'Total Issues: %{y}<br>' +
|
| 1636 |
+
'<extra></extra>',
|
| 1637 |
+
offsetgroup=agent_name # Group bars by agent for proper spacing
|
| 1638 |
+
),
|
| 1639 |
+
secondary_y=True
|
| 1640 |
+
)
|
| 1641 |
+
|
| 1642 |
+
# Update axes labels
|
| 1643 |
+
fig.update_xaxes(title_text=None)
|
| 1644 |
+
fig.update_yaxes(title_text="<b>Resolved Rate (%)</b>", secondary_y=False)
|
| 1645 |
+
fig.update_yaxes(title_text="<b>Total Issues</b>", secondary_y=True)
|
| 1646 |
+
|
| 1647 |
+
# Update layout
|
| 1648 |
+
fig.update_layout(
|
| 1649 |
+
title=None,
|
| 1650 |
+
hovermode='x unified',
|
| 1651 |
+
barmode='group',
|
| 1652 |
+
height=600,
|
| 1653 |
+
legend=dict(
|
| 1654 |
+
orientation="h",
|
| 1655 |
+
yanchor="bottom",
|
| 1656 |
+
y=1.02,
|
| 1657 |
+
xanchor="right",
|
| 1658 |
+
x=1
|
| 1659 |
+
),
|
| 1660 |
+
margin=dict(l=50, r=50, t=100, b=50)
|
| 1661 |
+
)
|
| 1662 |
+
|
| 1663 |
+
return fig
|
| 1664 |
+
|
| 1665 |
+
|
| 1666 |
+
def get_leaderboard_dataframe():
|
| 1667 |
+
"""
|
| 1668 |
+
Load leaderboard data from HuggingFace and convert to pandas DataFrame for display.
|
| 1669 |
+
Returns formatted DataFrame sorted by acceptance rate.
|
| 1670 |
+
"""
|
| 1671 |
+
# Load leaderboard data from HuggingFace
|
| 1672 |
+
leaderboard_data = load_leaderboard_dataset()
|
| 1673 |
+
|
| 1674 |
+
if not leaderboard_data:
|
| 1675 |
+
# Return empty DataFrame with correct columns if no data
|
| 1676 |
+
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1677 |
+
return pd.DataFrame(columns=column_names)
|
| 1678 |
+
|
| 1679 |
+
rows = []
|
| 1680 |
+
for data in leaderboard_data:
|
| 1681 |
+
# Only include display-relevant fields
|
| 1682 |
+
rows.append([
|
| 1683 |
+
data.get('agent_name', 'Unknown'),
|
| 1684 |
+
data.get('organization', 'Unknown'),
|
| 1685 |
+
data.get('total_issues', 0),
|
| 1686 |
+
data.get('resolved', 0),
|
| 1687 |
+
data.get('resolved_rate', 0.0),
|
| 1688 |
+
])
|
| 1689 |
+
|
| 1690 |
+
# Create DataFrame
|
| 1691 |
+
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1692 |
+
df = pd.DataFrame(rows, columns=column_names)
|
| 1693 |
+
|
| 1694 |
+
# Ensure numeric types
|
| 1695 |
+
numeric_cols = ["Total Issues", "Resolved Issues", "Resolved Rate (%)"]
|
| 1696 |
+
for col in numeric_cols:
|
| 1697 |
+
if col in df.columns:
|
| 1698 |
+
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
| 1699 |
+
|
| 1700 |
+
# Sort by Resolved Rate (%) descending
|
| 1701 |
+
if "Resolved Rate (%)" in df.columns and not df.empty:
|
| 1702 |
+
df = df.sort_values(by="Resolved Rate (%)", ascending=False).reset_index(drop=True)
|
| 1703 |
+
|
| 1704 |
+
return df
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
def refresh_leaderboard():
|
| 1708 |
+
"""Manually trigger data refresh for all agents using incremental updates."""
|
| 1709 |
+
try:
|
| 1710 |
+
print("🔄 Manual refresh initiated (incremental mode)")
|
| 1711 |
+
cache_dict = update_all_agents_incremental()
|
| 1712 |
+
if cache_dict:
|
| 1713 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1714 |
+
return "✅ Data refreshed successfully!", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1715 |
+
except Exception as e:
|
| 1716 |
+
error_msg = f"❌ Refresh failed: {str(e)}"
|
| 1717 |
+
print(error_msg)
|
| 1718 |
+
return error_msg, get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1719 |
+
|
| 1720 |
+
|
| 1721 |
+
def submit_agent(identifier, agent_name, organization, description, website):
|
| 1722 |
+
"""
|
| 1723 |
+
Submit a new agent to the leaderboard.
|
| 1724 |
+
Validates input, saves submission, and fetches PR metadata (memory-efficient).
|
| 1725 |
+
"""
|
| 1726 |
+
# Validate required fields
|
| 1727 |
+
if not identifier or not identifier.strip():
|
| 1728 |
+
return "❌ GitHub identifier is required", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1729 |
+
if not agent_name or not agent_name.strip():
|
| 1730 |
+
return "❌ Agent name is required", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1731 |
+
if not organization or not organization.strip():
|
| 1732 |
+
return "❌ Organization name is required", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1733 |
+
if not website or not website.strip():
|
| 1734 |
+
return "❌ Website URL is required", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1735 |
+
|
| 1736 |
+
# Clean inputs
|
| 1737 |
+
identifier = identifier.strip()
|
| 1738 |
+
agent_name = agent_name.strip()
|
| 1739 |
+
organization = organization.strip()
|
| 1740 |
+
description = description.strip()
|
| 1741 |
+
website = website.strip()
|
| 1742 |
+
|
| 1743 |
+
# Validate GitHub identifier
|
| 1744 |
+
is_valid, message = validate_github_username(identifier)
|
| 1745 |
+
if not is_valid:
|
| 1746 |
+
return f"❌ {message}", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1747 |
+
|
| 1748 |
+
# Check for duplicates by loading agents from HuggingFace
|
| 1749 |
+
agents = load_agents_from_hf()
|
| 1750 |
+
if agents:
|
| 1751 |
+
existing_names = {agent['github_identifier'] for agent in agents}
|
| 1752 |
+
if identifier in existing_names:
|
| 1753 |
+
return f"⚠️ Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1754 |
+
|
| 1755 |
+
# Create submission
|
| 1756 |
+
submission = {
|
| 1757 |
+
'agent_name': agent_name,
|
| 1758 |
+
'organization': organization,
|
| 1759 |
+
'github_identifier': identifier,
|
| 1760 |
+
'description': description,
|
| 1761 |
+
'website': website,
|
| 1762 |
+
}
|
| 1763 |
+
|
| 1764 |
+
# Save to HuggingFace
|
| 1765 |
+
if not save_agent_to_hf(submission):
|
| 1766 |
+
return "❌ Failed to save submission", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1767 |
+
|
| 1768 |
+
# Fetch issue metadata immediately (memory-efficient)
|
| 1769 |
+
token = get_github_token()
|
| 1770 |
+
try:
|
| 1771 |
+
print(f"Fetching issue metadata for {agent_name}...")
|
| 1772 |
+
|
| 1773 |
+
# Fetch lightweight metadata
|
| 1774 |
+
metadata_list = fetch_all_issues_metadata(identifier, agent_name, token)
|
| 1775 |
+
|
| 1776 |
+
if metadata_list:
|
| 1777 |
+
# Save metadata to HuggingFace
|
| 1778 |
+
save_issue_metadata_to_hf(metadata_list, identifier)
|
| 1779 |
+
|
| 1780 |
+
# Calculate stats from metadata
|
| 1781 |
+
stats = calculate_issue_stats_from_metadata(metadata_list)
|
| 1782 |
+
|
| 1783 |
+
# Load current leaderboard
|
| 1784 |
+
leaderboard_data = load_leaderboard_dataset()
|
| 1785 |
+
if not leaderboard_data:
|
| 1786 |
+
leaderboard_data = []
|
| 1787 |
+
|
| 1788 |
+
# Convert to dict for easy updating
|
| 1789 |
+
cache_dict = {entry['github_identifier']: entry for entry in leaderboard_data}
|
| 1790 |
+
cache_dict[identifier] = {**submission, **stats}
|
| 1791 |
+
|
| 1792 |
+
# Save to HuggingFace
|
| 1793 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1794 |
+
|
| 1795 |
+
return f"✅ Successfully submitted {agent_name}!", get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1796 |
+
|
| 1797 |
+
except Exception as e:
|
| 1798 |
+
error_msg = f"⚠️ Submitted {agent_name}, but failed to fetch issue data: {str(e)}"
|
| 1799 |
+
print(error_msg)
|
| 1800 |
+
import traceback
|
| 1801 |
+
traceback.print_exc()
|
| 1802 |
+
return error_msg, get_leaderboard_dataframe(), create_monthly_metrics_plot()
|
| 1803 |
+
|
| 1804 |
+
|
| 1805 |
+
# =============================================================================
|
| 1806 |
+
# BACKGROUND TASKS
|
| 1807 |
+
# =============================================================================
|
| 1808 |
+
|
| 1809 |
+
def daily_update_task():
|
| 1810 |
+
"""
|
| 1811 |
+
Daily scheduled task (runs at 12:00 AM UTC) for smart issue updates.
|
| 1812 |
+
|
| 1813 |
+
Strategy:
|
| 1814 |
+
1. For each agent, refresh open issues from last 6 months
|
| 1815 |
+
2. Skip issues that are already closed/resolved (no API calls)
|
| 1816 |
+
3. Only fetch status for open issues to check if they've been closed/resolved
|
| 1817 |
+
4. Update leaderboard with refreshed data
|
| 1818 |
+
|
| 1819 |
+
This is much more efficient than fetching all issues every time.
|
| 1820 |
+
"""
|
| 1821 |
+
print(f"\n{'='*80}")
|
| 1822 |
+
print(f"🕛 Daily update started at {datetime.now(timezone.utc).isoformat()}")
|
| 1823 |
+
print(f"{'='*80}")
|
| 1824 |
+
|
| 1825 |
+
try:
|
| 1826 |
+
token = get_github_token()
|
| 1827 |
+
|
| 1828 |
+
# Load all agents
|
| 1829 |
+
agents = load_agents_from_hf()
|
| 1830 |
+
if not agents:
|
| 1831 |
+
print("No agents found")
|
| 1832 |
+
return
|
| 1833 |
+
|
| 1834 |
+
print(f"📋 Processing {len(agents)} agents...")
|
| 1835 |
+
|
| 1836 |
+
total_checked = 0
|
| 1837 |
+
total_updated = 0
|
| 1838 |
+
|
| 1839 |
+
# Refresh open issues for each agent (last 6 months)
|
| 1840 |
+
for agent in agents:
|
| 1841 |
+
identifier = agent.get('github_identifier')
|
| 1842 |
+
agent_name = agent.get('agent_name', 'Unknown')
|
| 1843 |
+
|
| 1844 |
+
if not identifier:
|
| 1845 |
+
continue
|
| 1846 |
+
|
| 1847 |
+
print(f"\n{'='*60}")
|
| 1848 |
+
print(f"Processing: {agent_name} ({identifier})")
|
| 1849 |
+
print(f"{'='*60}")
|
| 1850 |
+
|
| 1851 |
+
# Refresh open issues from last 6 months
|
| 1852 |
+
checked, updated = refresh_open_issues_for_agent(identifier, token)
|
| 1853 |
+
total_checked += checked
|
| 1854 |
+
total_updated += updated
|
| 1855 |
+
|
| 1856 |
+
print(f"\n{'='*80}")
|
| 1857 |
+
print(f"📊 Refresh Summary:")
|
| 1858 |
+
print(f" Total open issues checked: {total_checked}")
|
| 1859 |
+
print(f" Issues updated (closed/resolved): {total_updated}")
|
| 1860 |
+
print(f"{'='*80}")
|
| 1861 |
+
|
| 1862 |
+
# Reconstruct leaderboard from all stored metadata
|
| 1863 |
+
print(f"\n📈 Rebuilding leaderboard from refreshed data...")
|
| 1864 |
+
cache_dict = construct_leaderboard_from_metadata()
|
| 1865 |
+
|
| 1866 |
+
if cache_dict:
|
| 1867 |
+
# Save leaderboard
|
| 1868 |
+
save_leaderboard_to_hf(cache_dict)
|
| 1869 |
+
print("✓ Leaderboard updated successfully")
|
| 1870 |
+
|
| 1871 |
+
print(f"\n✅ Daily update completed at {datetime.now(timezone.utc).isoformat()}")
|
| 1872 |
+
|
| 1873 |
+
except Exception as e:
|
| 1874 |
+
print(f"✗ Daily update failed: {str(e)}")
|
| 1875 |
+
import traceback
|
| 1876 |
+
traceback.print_exc()
|
| 1877 |
+
|
| 1878 |
+
|
| 1879 |
+
# =============================================================================
|
| 1880 |
+
# GRADIO APPLICATION
|
| 1881 |
+
# =============================================================================
|
| 1882 |
+
|
| 1883 |
+
# Initialize data before creating UI
|
| 1884 |
+
if DEBUG_MODE:
|
| 1885 |
+
print("\n" + "="*80)
|
| 1886 |
+
print("🐛 DEBUG MODE ENABLED 🐛")
|
| 1887 |
+
print("="*80)
|
| 1888 |
+
print("Issue retrieval is limited to 10 issues per query pattern per agent")
|
| 1889 |
+
|
| 1890 |
+
# Show how debug mode was enabled
|
| 1891 |
+
if args.debug:
|
| 1892 |
+
print("Enabled via: command-line flag '--debug'")
|
| 1893 |
+
print("To disable: run without '--debug' flag")
|
| 1894 |
+
else:
|
| 1895 |
+
print("Enabled via: DEBUG_MODE environment variable")
|
| 1896 |
+
print("To disable: run with '--no-debug' flag or unset DEBUG_MODE")
|
| 1897 |
+
|
| 1898 |
+
print("="*80 + "\n")
|
| 1899 |
+
else:
|
| 1900 |
+
print("\n🚀 Starting in PRODUCTION MODE - full issue retrieval enabled")
|
| 1901 |
+
if args.no_debug:
|
| 1902 |
+
print(" (Explicitly set via '--no-debug' flag)")
|
| 1903 |
+
print()
|
| 1904 |
+
|
| 1905 |
+
initialize_data()
|
| 1906 |
+
|
| 1907 |
+
# Start APScheduler for daily updates at 12:00 AM UTC
|
| 1908 |
+
scheduler = BackgroundScheduler(timezone="UTC")
|
| 1909 |
+
scheduler.add_job(
|
| 1910 |
+
daily_update_task,
|
| 1911 |
+
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
|
| 1912 |
+
id='daily_issue_refresh',
|
| 1913 |
+
name='Daily Issue Status Refresh',
|
| 1914 |
+
replace_existing=True
|
| 1915 |
+
)
|
| 1916 |
+
scheduler.start()
|
| 1917 |
+
print("✓ Scheduler started: Daily updates at 12:00 AM UTC")
|
| 1918 |
+
|
| 1919 |
+
# Create Gradio interface
|
| 1920 |
+
with gr.Blocks(title="SWE Agent Issue Leaderboard", theme=gr.themes.Soft()) as app:
|
| 1921 |
+
|
| 1922 |
+
gr.Markdown("# 🏆 SWE Agent Issue Leaderboard")
|
| 1923 |
+
gr.Markdown("Track and compare GitHub issue resolution statistics for SWE agents")
|
| 1924 |
+
|
| 1925 |
+
with gr.Tabs():
|
| 1926 |
+
|
| 1927 |
+
# Leaderboard Tab
|
| 1928 |
+
with gr.Tab("📊 Leaderboard"):
|
| 1929 |
+
with gr.Row():
|
| 1930 |
+
refresh_button = gr.Button("🔄 Refresh Data", variant="primary")
|
| 1931 |
+
status_display = gr.Textbox(
|
| 1932 |
+
label="Status",
|
| 1933 |
+
value="Ready",
|
| 1934 |
+
interactive=False,
|
| 1935 |
+
scale=3
|
| 1936 |
+
)
|
| 1937 |
+
|
| 1938 |
+
leaderboard_table = Leaderboard(
|
| 1939 |
+
value=get_leaderboard_dataframe(),
|
| 1940 |
+
datatype=LEADERBOARD_COLUMNS,
|
| 1941 |
+
search_columns=["Agent Name", "Organization"],
|
| 1942 |
+
filter_columns=["Resolved Rate (%)"]
|
| 1943 |
+
)
|
| 1944 |
+
|
| 1945 |
+
gr.Markdown("### Monthly Metrics")
|
| 1946 |
+
gr.Markdown("Track resolution rates and issue activity over time")
|
| 1947 |
+
|
| 1948 |
+
monthly_plot = gr.Plot(
|
| 1949 |
+
value=create_monthly_metrics_plot(),
|
| 1950 |
+
label="Monthly Issue Metrics"
|
| 1951 |
+
)
|
| 1952 |
+
|
| 1953 |
+
refresh_button.click(
|
| 1954 |
+
fn=refresh_leaderboard,
|
| 1955 |
+
outputs=[status_display, leaderboard_table, monthly_plot]
|
| 1956 |
+
)
|
| 1957 |
+
|
| 1958 |
+
# Submit Agent Tab
|
| 1959 |
+
with gr.Tab("➕ Submit Agent"):
|
| 1960 |
+
|
| 1961 |
+
gr.Markdown("### Submit Your Agent")
|
| 1962 |
+
gr.Markdown("Fill in the details below to add your agent to the leaderboard. Make sure you're logged in to HuggingFace CLI on your machine.")
|
| 1963 |
+
|
| 1964 |
+
with gr.Row():
|
| 1965 |
+
with gr.Column():
|
| 1966 |
+
github_input = gr.Textbox(
|
| 1967 |
+
label="GitHub Identifier*",
|
| 1968 |
+
placeholder="Your agent username (e.g., my-agent-bot)"
|
| 1969 |
+
)
|
| 1970 |
+
name_input = gr.Textbox(
|
| 1971 |
+
label="Agent Name*",
|
| 1972 |
+
placeholder="Your agent's display name"
|
| 1973 |
+
)
|
| 1974 |
+
|
| 1975 |
+
with gr.Column():
|
| 1976 |
+
organization_input = gr.Textbox(
|
| 1977 |
+
label="Organization*",
|
| 1978 |
+
placeholder="Your organization or team name"
|
| 1979 |
+
)
|
| 1980 |
+
description_input = gr.Textbox(
|
| 1981 |
+
label="Description",
|
| 1982 |
+
placeholder="Brief description of your agent",
|
| 1983 |
+
lines=3
|
| 1984 |
+
)
|
| 1985 |
+
website_input = gr.Textbox(
|
| 1986 |
+
label="Website",
|
| 1987 |
+
placeholder="https://your-agent-website.com"
|
| 1988 |
+
)
|
| 1989 |
+
|
| 1990 |
+
submit_button = gr.Button(
|
| 1991 |
+
"Submit Agent",
|
| 1992 |
+
variant="primary"
|
| 1993 |
+
)
|
| 1994 |
+
submission_status = gr.Textbox(
|
| 1995 |
+
label="Submission Status",
|
| 1996 |
+
interactive=False
|
| 1997 |
+
)
|
| 1998 |
+
|
| 1999 |
+
# Event handler
|
| 2000 |
+
submit_button.click(
|
| 2001 |
+
fn=submit_agent,
|
| 2002 |
+
inputs=[github_input, name_input, organization_input, description_input, website_input],
|
| 2003 |
+
outputs=[submission_status, leaderboard_table, monthly_plot]
|
| 2004 |
+
)
|
| 2005 |
+
|
| 2006 |
+
|
| 2007 |
+
# Launch application
|
| 2008 |
+
if __name__ == "__main__":
|
| 2009 |
+
app.launch()
|
msr.py
ADDED
|
@@ -0,0 +1,795 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Standalone miner to fetch issue metadata and update the leaderboard immediately.
|
| 3 |
+
|
| 4 |
+
This script reuses the same logic and on-disk/HuggingFace formats as app.py, but
|
| 5 |
+
has no UI or scheduler. You can run it once, or run it in a loop for hours.
|
| 6 |
+
|
| 7 |
+
Datasets used:
|
| 8 |
+
- Agents: SWE-Arena/swe_agents
|
| 9 |
+
- Issue metadata: SWE-Arena/issue_metadata
|
| 10 |
+
- Leaderboard: SWE-Arena/issue_leaderboard
|
| 11 |
+
|
| 12 |
+
Environment:
|
| 13 |
+
- Requires HF_TOKEN (for HuggingFace uploads)
|
| 14 |
+
- Optional GITHUB_TOKEN (highly recommended to avoid low rate limits)
|
| 15 |
+
- Reads .env if present
|
| 16 |
+
|
| 17 |
+
CLI flags:
|
| 18 |
+
- --debug / --no-debug: Same semantics as app.py (debug limits to 10 issues/pattern
|
| 19 |
+
and DOES NOT save to HF, mirroring app.py behavior).
|
| 20 |
+
- --loop: Keep running in a loop.
|
| 21 |
+
- --interval-seconds N: Sleep between loops (default 3600 seconds).
|
| 22 |
+
|
| 23 |
+
Note: In production mode (default), data will be saved to HuggingFace datasets.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import argparse
|
| 27 |
+
import json
|
| 28 |
+
import os
|
| 29 |
+
import random
|
| 30 |
+
import sys
|
| 31 |
+
import time
|
| 32 |
+
from collections import defaultdict
|
| 33 |
+
from datetime import datetime, timezone, timedelta
|
| 34 |
+
|
| 35 |
+
import pandas as pd
|
| 36 |
+
import requests
|
| 37 |
+
from dotenv import load_dotenv
|
| 38 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# =============================================================================
|
| 42 |
+
# Environment & CLI
|
| 43 |
+
# =============================================================================
|
| 44 |
+
|
| 45 |
+
load_dotenv()
|
| 46 |
+
|
| 47 |
+
parser = argparse.ArgumentParser(description="Immediate issue miner for SWE Arena")
|
| 48 |
+
parser.add_argument("--debug", "--DEBUG", action="store_true", help="Enable debug mode (limits issue retrieval to 10 per query; does NOT save to HF)")
|
| 49 |
+
parser.add_argument("--no-debug", "--production", action="store_true", help="Explicitly disable debug mode (force production mode)")
|
| 50 |
+
parser.add_argument("--loop", action="store_true", help="Run in a loop until interrupted")
|
| 51 |
+
parser.add_argument("--interval-seconds", type=int, default=3600, help="Sleep interval between loops in seconds (default: 3600)")
|
| 52 |
+
args = parser.parse_args()
|
| 53 |
+
|
| 54 |
+
# DEBUG MODE priority: 1) flags, 2) env var, 3) default False
|
| 55 |
+
if args.no_debug:
|
| 56 |
+
DEBUG_MODE = False
|
| 57 |
+
elif args.debug:
|
| 58 |
+
DEBUG_MODE = True
|
| 59 |
+
else:
|
| 60 |
+
DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() in ("true", "1", "yes")
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# =============================================================================
|
| 64 |
+
# Constants (match app.py)
|
| 65 |
+
# =============================================================================
|
| 66 |
+
|
| 67 |
+
DEBUG_LEADERBOARD_CACHE = {}
|
| 68 |
+
DEBUG_ISSUE_METADATA_CACHE = defaultdict(list)
|
| 69 |
+
|
| 70 |
+
AGENTS_REPO = "SWE-Arena/swe_agents"
|
| 71 |
+
LEADERBOARD_REPO = "SWE-Arena/issue_leaderboard"
|
| 72 |
+
ISSUE_METADATA_REPO = "SWE-Arena/issue_metadata"
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# =============================================================================
|
| 76 |
+
# Utilities & I/O (match app.py behavior exactly)
|
| 77 |
+
# =============================================================================
|
| 78 |
+
|
| 79 |
+
def load_jsonl(filename):
|
| 80 |
+
"""Load JSONL file and return list of dictionaries."""
|
| 81 |
+
if not os.path.exists(filename):
|
| 82 |
+
return []
|
| 83 |
+
|
| 84 |
+
data = []
|
| 85 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
| 86 |
+
for line in f:
|
| 87 |
+
line = line.strip()
|
| 88 |
+
if line:
|
| 89 |
+
try:
|
| 90 |
+
entry = json.loads(line)
|
| 91 |
+
data.append(entry)
|
| 92 |
+
except json.JSONDecodeError as e:
|
| 93 |
+
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 94 |
+
return data
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def save_jsonl(filename, data):
|
| 98 |
+
"""Save list of dictionaries to JSONL file."""
|
| 99 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
| 100 |
+
for item in data:
|
| 101 |
+
f.write(json.dumps(item) + '\n')
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def cache_to_dict(cache_list):
|
| 105 |
+
return {entry['github_identifier']: entry for entry in cache_list}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def dict_to_cache(cache_dict):
|
| 109 |
+
return list(cache_dict.values())
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def get_github_token():
|
| 113 |
+
token = os.getenv('GITHUB_TOKEN')
|
| 114 |
+
if not token:
|
| 115 |
+
print("Warning: GITHUB_TOKEN not found. API rate limits: 60/hour (authenticated: 5000/hour)")
|
| 116 |
+
return token
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def get_hf_token():
|
| 120 |
+
token = os.getenv('HF_TOKEN')
|
| 121 |
+
if not token:
|
| 122 |
+
print("Warning: HF_TOKEN not found in environment variables")
|
| 123 |
+
return token
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, token, max_retries=5):
|
| 127 |
+
"""
|
| 128 |
+
Upload file to HuggingFace with exponential backoff retry logic.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
api: HfApi instance
|
| 132 |
+
path_or_fileobj: Local file path to upload
|
| 133 |
+
path_in_repo: Target path in the repository
|
| 134 |
+
repo_id: Repository ID
|
| 135 |
+
repo_type: Type of repository (e.g., "dataset")
|
| 136 |
+
token: HuggingFace token
|
| 137 |
+
max_retries: Maximum number of retry attempts
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
True if upload succeeded, raises exception if all retries failed
|
| 141 |
+
"""
|
| 142 |
+
delay = 2.0 # Initial delay in seconds
|
| 143 |
+
|
| 144 |
+
for attempt in range(max_retries):
|
| 145 |
+
try:
|
| 146 |
+
api.upload_file(
|
| 147 |
+
path_or_fileobj=path_or_fileobj,
|
| 148 |
+
path_in_repo=path_in_repo,
|
| 149 |
+
repo_id=repo_id,
|
| 150 |
+
repo_type=repo_type,
|
| 151 |
+
token=token
|
| 152 |
+
)
|
| 153 |
+
if attempt > 0:
|
| 154 |
+
print(f" ✓ Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 155 |
+
return True
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
if attempt < max_retries - 1:
|
| 159 |
+
wait_time = delay + random.uniform(0, 1.0)
|
| 160 |
+
print(f" ⚠️ Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 161 |
+
print(f" ⏳ Retrying in {wait_time:.1f} seconds...")
|
| 162 |
+
time.sleep(wait_time)
|
| 163 |
+
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 164 |
+
else:
|
| 165 |
+
print(f" ✗ Upload failed after {max_retries} attempts: {str(e)}")
|
| 166 |
+
raise
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# =============================================================================
|
| 170 |
+
# GitHub API with backoff (same as app.py)
|
| 171 |
+
# =============================================================================
|
| 172 |
+
|
| 173 |
+
def request_with_backoff(method, url, *, headers=None, params=None, json_body=None, data=None, max_retries=10, timeout=30):
|
| 174 |
+
delay = 1.0
|
| 175 |
+
for attempt in range(max_retries):
|
| 176 |
+
try:
|
| 177 |
+
resp = requests.request(
|
| 178 |
+
method,
|
| 179 |
+
url,
|
| 180 |
+
headers=headers or {},
|
| 181 |
+
params=params,
|
| 182 |
+
json=json_body,
|
| 183 |
+
data=data,
|
| 184 |
+
timeout=timeout
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
status = resp.status_code
|
| 188 |
+
|
| 189 |
+
if 200 <= status < 300:
|
| 190 |
+
return resp
|
| 191 |
+
|
| 192 |
+
if status in (403, 429) or 500 <= status < 600:
|
| 193 |
+
wait = None
|
| 194 |
+
retry_after = resp.headers.get('Retry-After') or resp.headers.get('retry-after')
|
| 195 |
+
if retry_after:
|
| 196 |
+
try:
|
| 197 |
+
wait = float(retry_after)
|
| 198 |
+
except Exception:
|
| 199 |
+
wait = None
|
| 200 |
+
if wait is None and status in (403, 429):
|
| 201 |
+
reset_hdr = resp.headers.get('X-RateLimit-Reset') or resp.headers.get('x-ratelimit-reset')
|
| 202 |
+
if reset_hdr:
|
| 203 |
+
try:
|
| 204 |
+
reset_ts = int(float(reset_hdr))
|
| 205 |
+
wait = max(reset_ts - time.time() + 2, 1)
|
| 206 |
+
except Exception:
|
| 207 |
+
wait = None
|
| 208 |
+
if wait is None:
|
| 209 |
+
wait = delay + random.uniform(0, 0.5)
|
| 210 |
+
wait = max(1.0, min(wait, 120.0))
|
| 211 |
+
print(f"GitHub API {status}. Backing off {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 212 |
+
time.sleep(wait)
|
| 213 |
+
delay = min(delay * 2, 60.0)
|
| 214 |
+
continue
|
| 215 |
+
|
| 216 |
+
return resp
|
| 217 |
+
|
| 218 |
+
except requests.RequestException as e:
|
| 219 |
+
wait = delay + random.uniform(0, 0.5)
|
| 220 |
+
wait = max(1.0, min(wait, 60.0))
|
| 221 |
+
print(f"Request error: {e}. Retrying in {wait:.1f}s (attempt {attempt + 1}/{max_retries})...")
|
| 222 |
+
time.sleep(wait)
|
| 223 |
+
delay = min(delay * 2, 60.0)
|
| 224 |
+
|
| 225 |
+
print(f"Exceeded max retries for {url}")
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def fetch_issues_with_time_partition(base_query, start_date, end_date, headers, issues_by_id, debug_limit=None):
|
| 230 |
+
start_str = start_date.strftime('%Y-%m-%d')
|
| 231 |
+
end_str = end_date.strftime('%Y-%m-%d')
|
| 232 |
+
query = f'{base_query} created:{start_str}..{end_str}'
|
| 233 |
+
print(f" Searching range {start_str} to {end_str}...")
|
| 234 |
+
page = 1
|
| 235 |
+
per_page = 100
|
| 236 |
+
total_in_partition = 0
|
| 237 |
+
while True:
|
| 238 |
+
if debug_limit is not None and total_in_partition >= debug_limit:
|
| 239 |
+
print(f" 🐛 DEBUG MODE: Reached limit of {debug_limit} issues, stopping...")
|
| 240 |
+
return total_in_partition
|
| 241 |
+
url = 'https://api.github.com/search/issues'
|
| 242 |
+
params = {
|
| 243 |
+
'q': query,
|
| 244 |
+
'per_page': per_page,
|
| 245 |
+
'page': page,
|
| 246 |
+
'sort': 'created',
|
| 247 |
+
'order': 'asc'
|
| 248 |
+
}
|
| 249 |
+
try:
|
| 250 |
+
response = request_with_backoff('GET', url, headers=headers, params=params)
|
| 251 |
+
if response is None:
|
| 252 |
+
print(f" Error: retries exhausted for range {start_str} to {end_str}")
|
| 253 |
+
return total_in_partition
|
| 254 |
+
if response.status_code != 200:
|
| 255 |
+
print(f" Error: HTTP {response.status_code} for range {start_str} to {end_str}")
|
| 256 |
+
return total_in_partition
|
| 257 |
+
data = response.json()
|
| 258 |
+
total_count = data.get('total_count', 0)
|
| 259 |
+
items = data.get('items', [])
|
| 260 |
+
if not items:
|
| 261 |
+
break
|
| 262 |
+
for issue in items:
|
| 263 |
+
issue_id = issue.get('id')
|
| 264 |
+
if issue_id and issue_id not in issues_by_id:
|
| 265 |
+
issues_by_id[issue_id] = issue
|
| 266 |
+
total_in_partition += 1
|
| 267 |
+
if total_count > 1000 and page == 10:
|
| 268 |
+
print(f" ⚠️ Hit 1000-result limit ({total_count} total). Splitting time range...")
|
| 269 |
+
time_diff = end_date - start_date
|
| 270 |
+
mid_date = start_date + time_diff / 2
|
| 271 |
+
count1 = fetch_issues_with_time_partition(base_query, start_date, mid_date, headers, issues_by_id, debug_limit)
|
| 272 |
+
count2 = fetch_issues_with_time_partition(base_query, mid_date + timedelta(days=1), end_date, headers, issues_by_id, debug_limit)
|
| 273 |
+
return count1 + count2
|
| 274 |
+
if len(items) < per_page or page >= 10:
|
| 275 |
+
break
|
| 276 |
+
page += 1
|
| 277 |
+
time.sleep(0.5)
|
| 278 |
+
except Exception as e:
|
| 279 |
+
print(f" Error fetching range {start_str} to {end_str}: {str(e)}")
|
| 280 |
+
return total_in_partition
|
| 281 |
+
if total_in_partition > 0:
|
| 282 |
+
print(f" ✓ Found {total_in_partition} issues in range {start_str} to {end_str}")
|
| 283 |
+
return total_in_partition
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def extract_issue_metadata(issue):
|
| 287 |
+
created_at = issue.get('created_at')
|
| 288 |
+
closed_at = issue.get('closed_at')
|
| 289 |
+
state = issue.get('state')
|
| 290 |
+
state_reason = issue.get('state_reason')
|
| 291 |
+
return {
|
| 292 |
+
'html_url': issue.get('html_url'),
|
| 293 |
+
'created_at': created_at,
|
| 294 |
+
'closed_at': closed_at,
|
| 295 |
+
'state': state,
|
| 296 |
+
'state_reason': state_reason
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def fetch_all_issues_metadata(identifier, agent_name, token=None, start_from_date=None, year=None, exclude_dates=None):
|
| 301 |
+
headers = {'Authorization': f'token {token}'} if token else {}
|
| 302 |
+
debug_limit_per_pattern = 10 if DEBUG_MODE else None
|
| 303 |
+
if DEBUG_MODE:
|
| 304 |
+
print(f"\n🐛 DEBUG MODE ENABLED: Limiting to {debug_limit_per_pattern} issues per query pattern")
|
| 305 |
+
# Define query patterns for issues:
|
| 306 |
+
# 1) author pattern: issues authored by the identifier
|
| 307 |
+
# 2) assignee pattern: issues assigned to the identifier
|
| 308 |
+
# 3) mentions pattern: issues mentioning the identifier
|
| 309 |
+
stripped_id = identifier.replace('[bot]', '')
|
| 310 |
+
query_patterns = []
|
| 311 |
+
# Always add author pattern
|
| 312 |
+
query_patterns.append(f'is:issue author:{identifier}')
|
| 313 |
+
# Add assignee and mentions patterns
|
| 314 |
+
if stripped_id:
|
| 315 |
+
query_patterns.append(f'is:issue assignee:{stripped_id}')
|
| 316 |
+
query_patterns.append(f'is:issue mentions:{stripped_id}')
|
| 317 |
+
issues_by_id = {}
|
| 318 |
+
current_time = datetime.now(timezone.utc)
|
| 319 |
+
six_months_ago = current_time - timedelta(days=180)
|
| 320 |
+
if start_from_date:
|
| 321 |
+
start_date = max(start_from_date, six_months_ago)
|
| 322 |
+
else:
|
| 323 |
+
start_date = six_months_ago
|
| 324 |
+
end_date = current_time
|
| 325 |
+
for query_pattern in query_patterns:
|
| 326 |
+
print(f"\n🔍 Searching with query: {query_pattern}")
|
| 327 |
+
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 328 |
+
pattern_start_time = time.time()
|
| 329 |
+
initial_count = len(issues_by_id)
|
| 330 |
+
issues_found = fetch_issues_with_time_partition(
|
| 331 |
+
query_pattern,
|
| 332 |
+
start_date,
|
| 333 |
+
end_date,
|
| 334 |
+
headers,
|
| 335 |
+
issues_by_id,
|
| 336 |
+
debug_limit_per_pattern
|
| 337 |
+
)
|
| 338 |
+
pattern_duration = time.time() - pattern_start_time
|
| 339 |
+
new_issues = len(issues_by_id) - initial_count
|
| 340 |
+
print(f" ✓ Pattern complete: {new_issues} new issues found ({issues_found} total fetched, {len(issues_by_id) - initial_count - (issues_found - new_issues)} duplicates)")
|
| 341 |
+
print(f" ⏱️ Time taken: {pattern_duration:.1f} seconds")
|
| 342 |
+
time.sleep(0.2 if DEBUG_MODE else 1.0)
|
| 343 |
+
all_issues = list(issues_by_id.values())
|
| 344 |
+
|
| 345 |
+
# Filter out issues from excluded dates if specified
|
| 346 |
+
if exclude_dates:
|
| 347 |
+
filtered_issues = []
|
| 348 |
+
excluded_count = 0
|
| 349 |
+
for issue in all_issues:
|
| 350 |
+
created_at = issue.get('created_at')
|
| 351 |
+
if created_at:
|
| 352 |
+
try:
|
| 353 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 354 |
+
issue_date = dt.date()
|
| 355 |
+
if issue_date not in exclude_dates:
|
| 356 |
+
filtered_issues.append(issue)
|
| 357 |
+
else:
|
| 358 |
+
excluded_count += 1
|
| 359 |
+
except Exception:
|
| 360 |
+
filtered_issues.append(issue) # Keep issues with unparseable dates
|
| 361 |
+
else:
|
| 362 |
+
filtered_issues.append(issue) # Keep issues without created_at
|
| 363 |
+
|
| 364 |
+
if excluded_count > 0:
|
| 365 |
+
print(f" ⏭️ Skipped {excluded_count} issues from already-mined dates")
|
| 366 |
+
all_issues = filtered_issues
|
| 367 |
+
|
| 368 |
+
if DEBUG_MODE:
|
| 369 |
+
print(f"\n✅ COMPLETE (DEBUG MODE): Found {len(all_issues)} unique issues for {identifier}")
|
| 370 |
+
print(f" Note: In production mode, this would fetch ALL issues")
|
| 371 |
+
else:
|
| 372 |
+
print(f"\n✅ COMPLETE: Found {len(all_issues)} unique issues for {identifier}")
|
| 373 |
+
print("📦 Extracting minimal metadata...")
|
| 374 |
+
metadata_list = [extract_issue_metadata(issue) for issue in all_issues]
|
| 375 |
+
original_size = sys.getsizeof(str(all_issues))
|
| 376 |
+
metadata_size = sys.getsizeof(str(metadata_list))
|
| 377 |
+
savings_pct = ((original_size - metadata_size) / original_size * 100) if original_size > 0 else 0
|
| 378 |
+
print(f"💾 Memory efficiency: {original_size // 1024}KB → {metadata_size // 1024}KB (saved {savings_pct:.1f}%)")
|
| 379 |
+
return metadata_list
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def group_metadata_by_date(metadata_list):
|
| 383 |
+
grouped = defaultdict(list)
|
| 384 |
+
for issue_meta in metadata_list:
|
| 385 |
+
created_at = issue_meta.get('created_at')
|
| 386 |
+
if not created_at:
|
| 387 |
+
continue
|
| 388 |
+
try:
|
| 389 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 390 |
+
key = (dt.year, dt.month, dt.day)
|
| 391 |
+
grouped[key].append(issue_meta)
|
| 392 |
+
except Exception as e:
|
| 393 |
+
print(f"Warning: Could not parse date '{created_at}': {e}")
|
| 394 |
+
return dict(grouped)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def save_issue_metadata_to_hf(metadata_list, agent_identifier):
|
| 398 |
+
if DEBUG_MODE:
|
| 399 |
+
global DEBUG_ISSUE_METADATA_CACHE
|
| 400 |
+
existing = {issue['html_url']: issue for issue in DEBUG_ISSUE_METADATA_CACHE[agent_identifier] if issue.get('html_url')}
|
| 401 |
+
new = {issue['html_url']: issue for issue in metadata_list if issue.get('html_url')}
|
| 402 |
+
existing.update(new)
|
| 403 |
+
DEBUG_ISSUE_METADATA_CACHE[agent_identifier] = list(existing.values())
|
| 404 |
+
print(f"🐛 DEBUG MODE: Saved to in-memory cache only ({len(metadata_list)} issues) - NOT saved to HuggingFace")
|
| 405 |
+
return True
|
| 406 |
+
try:
|
| 407 |
+
token = get_hf_token()
|
| 408 |
+
if not token:
|
| 409 |
+
raise Exception("No HuggingFace token found")
|
| 410 |
+
api = HfApi()
|
| 411 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 412 |
+
for (issue_year, month, day), day_metadata in grouped.items():
|
| 413 |
+
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 414 |
+
filename = f"{agent_identifier}/{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 415 |
+
local_filename = f"{issue_year}.{month:02d}.{day:02d}.jsonl"
|
| 416 |
+
print(f"📤 Uploading {len(day_metadata)} issues to {filename}...")
|
| 417 |
+
existing_metadata = []
|
| 418 |
+
try:
|
| 419 |
+
file_path = hf_hub_download(
|
| 420 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 421 |
+
filename=filename,
|
| 422 |
+
repo_type="dataset",
|
| 423 |
+
token=token
|
| 424 |
+
)
|
| 425 |
+
existing_metadata = load_jsonl(file_path)
|
| 426 |
+
print(f" Found {len(existing_metadata)} existing issues in {filename}")
|
| 427 |
+
except Exception:
|
| 428 |
+
print(f" No existing file found for {filename}, creating new")
|
| 429 |
+
existing_by_url = {meta['html_url']: meta for meta in existing_metadata if meta.get('html_url')}
|
| 430 |
+
new_by_url = {meta['html_url']: meta for meta in day_metadata if meta.get('html_url')}
|
| 431 |
+
existing_by_url.update(new_by_url)
|
| 432 |
+
merged_metadata = list(existing_by_url.values())
|
| 433 |
+
save_jsonl(local_filename, merged_metadata)
|
| 434 |
+
try:
|
| 435 |
+
upload_with_retry(
|
| 436 |
+
api=api,
|
| 437 |
+
path_or_fileobj=local_filename,
|
| 438 |
+
path_in_repo=filename,
|
| 439 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 440 |
+
repo_type="dataset",
|
| 441 |
+
token=token
|
| 442 |
+
)
|
| 443 |
+
print(f" ✓ Saved {len(merged_metadata)} total issues to {filename}")
|
| 444 |
+
finally:
|
| 445 |
+
# Always clean up the local file, even if upload fails
|
| 446 |
+
if os.path.exists(local_filename):
|
| 447 |
+
os.remove(local_filename)
|
| 448 |
+
return True
|
| 449 |
+
except Exception as e:
|
| 450 |
+
print(f"✗ Error saving issue metadata: {str(e)}")
|
| 451 |
+
return False
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def load_agents_from_hf():
|
| 455 |
+
try:
|
| 456 |
+
api = HfApi()
|
| 457 |
+
agents = []
|
| 458 |
+
files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
|
| 459 |
+
json_files = [f for f in files if f.endswith('.json')]
|
| 460 |
+
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 461 |
+
for json_file in json_files:
|
| 462 |
+
try:
|
| 463 |
+
file_path = hf_hub_download(
|
| 464 |
+
repo_id=AGENTS_REPO,
|
| 465 |
+
filename=json_file,
|
| 466 |
+
repo_type="dataset"
|
| 467 |
+
)
|
| 468 |
+
with open(file_path, 'r') as f:
|
| 469 |
+
agent_data = json.load(f)
|
| 470 |
+
agents.append(agent_data)
|
| 471 |
+
except Exception as e:
|
| 472 |
+
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 473 |
+
continue
|
| 474 |
+
print(f"✓ Loaded {len(agents)} agents from HuggingFace")
|
| 475 |
+
return agents
|
| 476 |
+
except Exception as e:
|
| 477 |
+
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 478 |
+
return None
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def load_issue_metadata_for_year(year):
|
| 482 |
+
if DEBUG_MODE and DEBUG_ISSUE_METADATA_CACHE:
|
| 483 |
+
all_metadata = []
|
| 484 |
+
for agent_identifier, metadata_list in DEBUG_ISSUE_METADATA_CACHE.items():
|
| 485 |
+
for issue_meta in metadata_list:
|
| 486 |
+
issue_with_agent = issue_meta.copy()
|
| 487 |
+
issue_with_agent['agent_identifier'] = agent_identifier
|
| 488 |
+
all_metadata.append(issue_with_agent)
|
| 489 |
+
if all_metadata:
|
| 490 |
+
print(f"🐛 DEBUG MODE: Loading issue metadata from in-memory cache ({len(all_metadata)} issues)")
|
| 491 |
+
return all_metadata
|
| 492 |
+
try:
|
| 493 |
+
api = HfApi()
|
| 494 |
+
token = get_hf_token()
|
| 495 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 496 |
+
# Filter for files matching the year pattern: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 497 |
+
year_str = str(year)
|
| 498 |
+
year_files = []
|
| 499 |
+
for f in files:
|
| 500 |
+
if f.endswith('.jsonl'):
|
| 501 |
+
parts = f.split('/')
|
| 502 |
+
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
|
| 503 |
+
filename = parts[1]
|
| 504 |
+
if filename.startswith(year_str + '.'):
|
| 505 |
+
year_files.append(f)
|
| 506 |
+
print(f"📥 Loading issue metadata for {year} ({len(year_files)} daily files across all agents)...")
|
| 507 |
+
all_metadata = []
|
| 508 |
+
for filename in year_files:
|
| 509 |
+
try:
|
| 510 |
+
parts = filename.split('/')
|
| 511 |
+
if len(parts) != 2:
|
| 512 |
+
print(f" Warning: Unexpected filename format: {filename}")
|
| 513 |
+
continue
|
| 514 |
+
agent_identifier = parts[0]
|
| 515 |
+
file_path = hf_hub_download(
|
| 516 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 517 |
+
filename=filename,
|
| 518 |
+
repo_type="dataset",
|
| 519 |
+
token=token
|
| 520 |
+
)
|
| 521 |
+
day_metadata = load_jsonl(file_path)
|
| 522 |
+
for issue_meta in day_metadata:
|
| 523 |
+
issue_meta['agent_identifier'] = agent_identifier
|
| 524 |
+
all_metadata.extend(day_metadata)
|
| 525 |
+
print(f" ✓ Loaded {len(day_metadata)} issues from {filename}")
|
| 526 |
+
except Exception as e:
|
| 527 |
+
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 528 |
+
print(f"✓ Loaded {len(all_metadata)} total issues for {year}")
|
| 529 |
+
return all_metadata
|
| 530 |
+
except Exception as e:
|
| 531 |
+
print(f"✗ Error loading issue metadata for {year}: {str(e)}")
|
| 532 |
+
return []
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
def get_latest_issue_date_for_agent(agent_identifier):
|
| 536 |
+
try:
|
| 537 |
+
api = HfApi()
|
| 538 |
+
token = get_hf_token()
|
| 539 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 540 |
+
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 541 |
+
agent_pattern = f"{agent_identifier}/"
|
| 542 |
+
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 543 |
+
if not agent_files:
|
| 544 |
+
return None
|
| 545 |
+
latest_date = None
|
| 546 |
+
for filename in agent_files:
|
| 547 |
+
try:
|
| 548 |
+
file_path = hf_hub_download(
|
| 549 |
+
repo_id=ISSUE_METADATA_REPO,
|
| 550 |
+
filename=filename,
|
| 551 |
+
repo_type="dataset",
|
| 552 |
+
token=token
|
| 553 |
+
)
|
| 554 |
+
metadata = load_jsonl(file_path)
|
| 555 |
+
for issue in metadata:
|
| 556 |
+
created_at = issue.get('created_at')
|
| 557 |
+
if created_at:
|
| 558 |
+
try:
|
| 559 |
+
dt = datetime.fromisoformat(created_at.replace('Z', '+00:00'))
|
| 560 |
+
if latest_date is None or dt > latest_date:
|
| 561 |
+
latest_date = dt
|
| 562 |
+
except Exception:
|
| 563 |
+
continue
|
| 564 |
+
except Exception:
|
| 565 |
+
continue
|
| 566 |
+
return latest_date
|
| 567 |
+
except Exception:
|
| 568 |
+
return None
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
def get_already_mined_dates(agent_identifier, n_months=6):
|
| 572 |
+
"""
|
| 573 |
+
Get set of dates that have already been mined for an agent.
|
| 574 |
+
|
| 575 |
+
Args:
|
| 576 |
+
agent_identifier: GitHub identifier of the agent
|
| 577 |
+
n_months: Number of months to look back (default: 6)
|
| 578 |
+
|
| 579 |
+
Returns:
|
| 580 |
+
Set of date objects (datetime.date) that already have data files
|
| 581 |
+
"""
|
| 582 |
+
try:
|
| 583 |
+
api = HfApi()
|
| 584 |
+
|
| 585 |
+
# Calculate date range
|
| 586 |
+
today = datetime.now(timezone.utc)
|
| 587 |
+
n_months_ago = today - timedelta(days=30 * n_months)
|
| 588 |
+
|
| 589 |
+
# List all files in the repository
|
| 590 |
+
files = api.list_repo_files(repo_id=ISSUE_METADATA_REPO, repo_type="dataset")
|
| 591 |
+
|
| 592 |
+
# Filter for files in this agent's folder
|
| 593 |
+
agent_pattern = f"{agent_identifier}/"
|
| 594 |
+
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 595 |
+
|
| 596 |
+
mined_dates = set()
|
| 597 |
+
for filename in agent_files:
|
| 598 |
+
try:
|
| 599 |
+
# Extract date from filename: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 600 |
+
parts = filename.split('/')
|
| 601 |
+
if len(parts) != 2:
|
| 602 |
+
continue
|
| 603 |
+
|
| 604 |
+
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 605 |
+
date_components = date_part.split('.')
|
| 606 |
+
if len(date_components) != 3:
|
| 607 |
+
continue
|
| 608 |
+
|
| 609 |
+
file_year, file_month, file_day = map(int, date_components)
|
| 610 |
+
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc).date()
|
| 611 |
+
|
| 612 |
+
# Only include dates within the last n_months
|
| 613 |
+
if n_months_ago.date() <= file_date <= today.date():
|
| 614 |
+
mined_dates.add(file_date)
|
| 615 |
+
except Exception as e:
|
| 616 |
+
print(f" Warning: Could not parse date from filename {filename}: {e}")
|
| 617 |
+
continue
|
| 618 |
+
|
| 619 |
+
return mined_dates
|
| 620 |
+
|
| 621 |
+
except Exception as e:
|
| 622 |
+
print(f" Warning: Could not get already-mined dates for {agent_identifier}: {str(e)}")
|
| 623 |
+
return set()
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def save_leaderboard_to_hf(cache_dict):
|
| 627 |
+
if DEBUG_MODE:
|
| 628 |
+
global DEBUG_LEADERBOARD_CACHE
|
| 629 |
+
DEBUG_LEADERBOARD_CACHE = cache_dict.copy()
|
| 630 |
+
data_list = dict_to_cache(cache_dict)
|
| 631 |
+
print(f"🐛 DEBUG MODE: Saved to in-memory cache only ({len(data_list)} entries) - NOT saved to HuggingFace")
|
| 632 |
+
return True
|
| 633 |
+
try:
|
| 634 |
+
token = get_hf_token()
|
| 635 |
+
if not token:
|
| 636 |
+
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your environment.")
|
| 637 |
+
data_list = dict_to_cache(cache_dict)
|
| 638 |
+
df = pd.DataFrame(data_list)
|
| 639 |
+
year = datetime.now().year
|
| 640 |
+
filename = f"{year}.csv"
|
| 641 |
+
df.to_csv(filename, index=False)
|
| 642 |
+
api = HfApi()
|
| 643 |
+
try:
|
| 644 |
+
upload_with_retry(
|
| 645 |
+
api=api,
|
| 646 |
+
path_or_fileobj=filename,
|
| 647 |
+
path_in_repo=filename,
|
| 648 |
+
repo_id=LEADERBOARD_REPO,
|
| 649 |
+
repo_type="dataset",
|
| 650 |
+
token=token
|
| 651 |
+
)
|
| 652 |
+
print(f"✓ Saved leaderboard to HuggingFace as {filename} ({len(data_list)} entries)")
|
| 653 |
+
return True
|
| 654 |
+
finally:
|
| 655 |
+
# Always clean up local file, even if upload fails
|
| 656 |
+
if os.path.exists(filename):
|
| 657 |
+
os.remove(filename)
|
| 658 |
+
except Exception as e:
|
| 659 |
+
print(f"✗ Error saving leaderboard: {str(e)}")
|
| 660 |
+
return False
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
def calculate_issue_stats_from_metadata(metadata_list):
|
| 664 |
+
total_issues = len(metadata_list)
|
| 665 |
+
resolved = sum(1 for issue_meta in metadata_list if issue_meta.get('state_reason') == 'completed')
|
| 666 |
+
resolved_rate = (resolved / total_issues * 100) if total_issues > 0 else 0
|
| 667 |
+
return {
|
| 668 |
+
'total_issues': total_issues,
|
| 669 |
+
'resolved': resolved,
|
| 670 |
+
'resolved_rate': round(resolved_rate, 2),
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def update_all_agents_incremental():
|
| 675 |
+
"""
|
| 676 |
+
Memory-efficient incremental update of issue statistics for all agents.
|
| 677 |
+
|
| 678 |
+
Strategy:
|
| 679 |
+
1. For each agent, load existing data from SWE-Arena/issue_metadata
|
| 680 |
+
2. Identify already-mined dates (based on filename: YYYY.MM.DD.jsonl)
|
| 681 |
+
3. Only fetch issues from dates that haven't been mined yet (within last 6 months)
|
| 682 |
+
4. If no data exists at all, mine everything from scratch
|
| 683 |
+
5. Store minimal metadata (not full issue objects) to avoid storage limits
|
| 684 |
+
6. Construct leaderboard from ALL stored metadata (last 6 months)
|
| 685 |
+
|
| 686 |
+
Returns dictionary of all agent data with current stats.
|
| 687 |
+
"""
|
| 688 |
+
token = get_github_token()
|
| 689 |
+
current_year = datetime.now().year
|
| 690 |
+
agents = load_agents_from_hf()
|
| 691 |
+
if not agents:
|
| 692 |
+
print("No agents found in HuggingFace dataset")
|
| 693 |
+
return {}
|
| 694 |
+
cache_dict = {}
|
| 695 |
+
for agent in agents:
|
| 696 |
+
identifier = agent.get('github_identifier')
|
| 697 |
+
agent_name = agent.get('agent_name', 'Unknown')
|
| 698 |
+
if not identifier:
|
| 699 |
+
print(f"Warning: Skipping agent without identifier: {agent}")
|
| 700 |
+
continue
|
| 701 |
+
try:
|
| 702 |
+
print(f"\n{'='*80}")
|
| 703 |
+
print(f"Processing: {agent_name} ({identifier})")
|
| 704 |
+
print(f"{'='*80}")
|
| 705 |
+
|
| 706 |
+
# Get already-mined dates for this agent (last 6 months)
|
| 707 |
+
already_mined_dates = get_already_mined_dates(identifier, n_months=6)
|
| 708 |
+
|
| 709 |
+
if already_mined_dates:
|
| 710 |
+
print(f"📅 Found {len(already_mined_dates)} already-mined dates")
|
| 711 |
+
print(f" Skipping these dates and fetching only new data...")
|
| 712 |
+
# Fetch only issues from dates not yet mined
|
| 713 |
+
new_metadata = fetch_all_issues_metadata(
|
| 714 |
+
identifier,
|
| 715 |
+
agent_name,
|
| 716 |
+
token,
|
| 717 |
+
start_from_date=None, # Use full 6-month range
|
| 718 |
+
exclude_dates=already_mined_dates # But exclude already-mined dates
|
| 719 |
+
)
|
| 720 |
+
else:
|
| 721 |
+
print(f"📅 No existing data found. Mining everything from scratch...")
|
| 722 |
+
# Mine everything from scratch (full 6-month range)
|
| 723 |
+
new_metadata = fetch_all_issues_metadata(
|
| 724 |
+
identifier,
|
| 725 |
+
agent_name,
|
| 726 |
+
token,
|
| 727 |
+
start_from_date=None
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
if new_metadata:
|
| 731 |
+
print(f"💾 Saving {len(new_metadata)} new issue records...")
|
| 732 |
+
save_issue_metadata_to_hf(new_metadata, identifier)
|
| 733 |
+
else:
|
| 734 |
+
print(f" No new issues to save")
|
| 735 |
+
|
| 736 |
+
# Load ALL metadata for current year to calculate stats (aggregates entire last 6 months)
|
| 737 |
+
print(f"📊 Calculating statistics from ALL stored metadata (last 6 months)...")
|
| 738 |
+
all_year_metadata = load_issue_metadata_for_year(current_year)
|
| 739 |
+
agent_metadata = [issue for issue in all_year_metadata if issue.get('agent_identifier') == identifier]
|
| 740 |
+
stats = calculate_issue_stats_from_metadata(agent_metadata)
|
| 741 |
+
cache_dict[identifier] = {
|
| 742 |
+
'agent_name': agent_name,
|
| 743 |
+
'organization': agent.get('organization', 'Unknown'),
|
| 744 |
+
'github_identifier': identifier,
|
| 745 |
+
**stats
|
| 746 |
+
}
|
| 747 |
+
print(f"✓ Updated {identifier}: {stats['total_issues']} issues, {stats['resolved_rate']}% resolved")
|
| 748 |
+
except Exception as e:
|
| 749 |
+
print(f"✗ Error updating {identifier}: {str(e)}")
|
| 750 |
+
import traceback
|
| 751 |
+
traceback.print_exc()
|
| 752 |
+
continue
|
| 753 |
+
return cache_dict
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
def run_once():
|
| 757 |
+
print("\n🚀 Immediate mining run started")
|
| 758 |
+
cache_dict = update_all_agents_incremental()
|
| 759 |
+
if cache_dict:
|
| 760 |
+
save_leaderboard_to_hf(cache_dict)
|
| 761 |
+
print("✅ Immediate mining run completed\n")
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
def main():
|
| 765 |
+
if DEBUG_MODE:
|
| 766 |
+
print("\n" + "="*80)
|
| 767 |
+
print("🐛 DEBUG MODE ENABLED 🐛")
|
| 768 |
+
print("="*80)
|
| 769 |
+
print("Issue retrieval is limited to 10 issues per query pattern per agent")
|
| 770 |
+
print("Data will NOT be saved to HuggingFace in debug mode.")
|
| 771 |
+
print("="*80 + "\n")
|
| 772 |
+
else:
|
| 773 |
+
print("\n🚀 Starting in PRODUCTION MODE - full issue retrieval enabled")
|
| 774 |
+
print()
|
| 775 |
+
|
| 776 |
+
if not args.loop:
|
| 777 |
+
run_once()
|
| 778 |
+
return
|
| 779 |
+
|
| 780 |
+
print(f"🔁 Loop mode enabled. Interval: {args.interval_seconds} seconds")
|
| 781 |
+
try:
|
| 782 |
+
while True:
|
| 783 |
+
start = time.time()
|
| 784 |
+
run_once()
|
| 785 |
+
elapsed = time.time() - start
|
| 786 |
+
sleep_for = max(0, args.interval_seconds - int(elapsed))
|
| 787 |
+
if sleep_for > 0:
|
| 788 |
+
print(f"😴 Sleeping {sleep_for} seconds before next run...")
|
| 789 |
+
time.sleep(sleep_for)
|
| 790 |
+
except KeyboardInterrupt:
|
| 791 |
+
print("\n👋 Loop interrupted by user. Exiting...")
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
if __name__ == "__main__":
|
| 795 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
APScheduler
|
| 2 |
+
datasets
|
| 3 |
+
gradio
|
| 4 |
+
gradio_leaderboard
|
| 5 |
+
huggingface_hub
|
| 6 |
+
pandas
|
| 7 |
+
plotly
|
| 8 |
+
PyGithub
|
| 9 |
+
python-dotenv
|