Spaces:
Running
Running
refactor
Browse files
tasks.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, field
|
| 2 |
+
from datasets import load_dataset, Dataset
|
| 3 |
+
from functools import cached_property
|
| 4 |
+
from tqdm.auto import tqdm
|
| 5 |
+
from typing import Any, Optional, Protocol, Iterable, Callable
|
| 6 |
+
|
| 7 |
+
from utils import (
|
| 8 |
+
NUMERIC_IN_ZH,
|
| 9 |
+
extract_choice_ans,
|
| 10 |
+
extract_numeric,
|
| 11 |
+
get_answer,
|
| 12 |
+
is_equiv,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
from evaluate import load
|
| 16 |
+
|
| 17 |
+
TextGenerationPipeline = Callable[[Iterable[str]], list[str]]
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def fake_pipeline(prompts: Iterable[str]) -> list[str]:
|
| 21 |
+
return [prompt for prompt in tqdm(prompts)]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class Task:
|
| 26 |
+
dataset_name: str | tuple[str, str] = ("gsm8k", "main")
|
| 27 |
+
split: str = "test"
|
| 28 |
+
# metrics: list[str] = field(default_factory=list)
|
| 29 |
+
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
|
| 30 |
+
input_column: str = "question"
|
| 31 |
+
label_column: str = "answer"
|
| 32 |
+
prompt: Optional[Callable | str] = None
|
| 33 |
+
|
| 34 |
+
@cached_property
|
| 35 |
+
def name(self):
|
| 36 |
+
return (
|
| 37 |
+
self.dataset_name
|
| 38 |
+
if isinstance(self.dataset_name, str)
|
| 39 |
+
else self.dataset_name[0]
|
| 40 |
+
) + f"-{self.split}"
|
| 41 |
+
|
| 42 |
+
@cached_property
|
| 43 |
+
def samples(self):
|
| 44 |
+
return self.dataset[self.input_column]
|
| 45 |
+
|
| 46 |
+
@cached_property
|
| 47 |
+
def dataset(self):
|
| 48 |
+
ds = load_dataset(
|
| 49 |
+
*self.dataset_name
|
| 50 |
+
if isinstance(self.dataset_name, tuple)
|
| 51 |
+
else self.dataset_name,
|
| 52 |
+
split=self.split,
|
| 53 |
+
)
|
| 54 |
+
if self.prompt is not None:
|
| 55 |
+
ds = ds.map(
|
| 56 |
+
lambda example: {
|
| 57 |
+
self.input_column: self.prompt.format(
|
| 58 |
+
input_column=example[self.input_column]
|
| 59 |
+
)
|
| 60 |
+
}
|
| 61 |
+
if isinstance(self.prompt, str)
|
| 62 |
+
else self.prompt(example),
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
return ds
|
| 66 |
+
|
| 67 |
+
@cached_property
|
| 68 |
+
def metric(self):
|
| 69 |
+
metric = (
|
| 70 |
+
load(self.metric_name)
|
| 71 |
+
if isinstance(self.metric_name, str)
|
| 72 |
+
else load(*self.metric_name)
|
| 73 |
+
)
|
| 74 |
+
return metric
|
| 75 |
+
|
| 76 |
+
def run(self, pipeline: TextGenerationPipeline = fake_pipeline):
|
| 77 |
+
outputs = pipeline(self.samples)
|
| 78 |
+
return self.metric.compute(
|
| 79 |
+
responses=outputs, references=self.dataset[self.label_column]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class Metrics:
|
| 84 |
+
def gsm8k(responses: list[str], answers: list[str | int]):
|
| 85 |
+
scores = []
|
| 86 |
+
for response, answer in zip(responses, answers):
|
| 87 |
+
pred = extract_numeric(response)
|
| 88 |
+
gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
|
| 89 |
+
scores.append(1.0 * (pred == gold))
|
| 90 |
+
return scores
|
| 91 |
+
|
| 92 |
+
def MATH(responses: list[str], answers: list[str]):
|
| 93 |
+
scores = []
|
| 94 |
+
|
| 95 |
+
for response, answer in zip(responses, answers):
|
| 96 |
+
indices = [pos for pos, char in enumerate(response) if char == "$"]
|
| 97 |
+
if len(indices) <= 2:
|
| 98 |
+
scores.append(0)
|
| 99 |
+
continue
|
| 100 |
+
else:
|
| 101 |
+
result = response[indices[-2] + 1 : indices[-1]]
|
| 102 |
+
gold = get_answer(answer)
|
| 103 |
+
scores.append(1.0 * is_equiv(result, gold))
|
| 104 |
+
|
| 105 |
+
return scores
|
| 106 |
+
|
| 107 |
+
def math23k(responses: list[str], answers: list[str]):
|
| 108 |
+
scores = []
|
| 109 |
+
for response, answer in zip(responses, answers):
|
| 110 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 111 |
+
gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
|
| 112 |
+
scores.append(1.0 * (pred == gold))
|
| 113 |
+
return scores
|
| 114 |
+
|
| 115 |
+
def gsm8k_zh(responses: list[str], answers: list[str]):
|
| 116 |
+
scores = []
|
| 117 |
+
for response, answer in zip(responses, answers):
|
| 118 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 119 |
+
gold = extract_numeric(answer)
|
| 120 |
+
scores.append(1.0 * (pred == gold))
|
| 121 |
+
return scores
|
| 122 |
+
|
| 123 |
+
def svamp(responses: list[float], answers: list[str]):
|
| 124 |
+
scores = []
|
| 125 |
+
for response, answer in zip(responses, answers):
|
| 126 |
+
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 127 |
+
gold = answer
|
| 128 |
+
scores.append(1.0 * (float(pred) == gold))
|
| 129 |
+
return scores
|
| 130 |
+
|
| 131 |
+
def mmlu(responses, answers):
|
| 132 |
+
scores = []
|
| 133 |
+
for response, answer in zip(responses, answers):
|
| 134 |
+
pred = extract_choice_ans(response)
|
| 135 |
+
gold = answer.lower()
|
| 136 |
+
scores.append(1.0 * (pred == gold))
|
| 137 |
+
return scores
|
tlem.py
CHANGED
|
@@ -8,6 +8,11 @@ except Exception as e:
|
|
| 8 |
from typing import Any, Optional, Protocol, Iterable, Callable
|
| 9 |
from tqdm.auto import tqdm
|
| 10 |
from evaluate.evaluation_suite import EvaluationSuite
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# %%
|
| 13 |
|
|
@@ -15,150 +20,6 @@ from evaluate.evaluation_suite import EvaluationSuite
|
|
| 15 |
|
| 16 |
# %load_ext ipytorch
|
| 17 |
# %ls
|
| 18 |
-
from utils import (
|
| 19 |
-
NUMERIC_IN_ZH,
|
| 20 |
-
extract_choice_ans,
|
| 21 |
-
extract_numeric,
|
| 22 |
-
get_answer,
|
| 23 |
-
is_equiv,
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
from dataclasses import dataclass, field
|
| 28 |
-
from datasets import load_dataset, Dataset
|
| 29 |
-
from functools import cached_property
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
TextGenerationPipeline = Callable[[Iterable[str]], list[str]]
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
from evaluate import load
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def fake_pipeline(prompts: Iterable[str]) -> list[str]:
|
| 39 |
-
return [prompt for prompt in tqdm(prompts)]
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
@dataclass
|
| 43 |
-
class Task:
|
| 44 |
-
dataset_name: str | tuple[str, str] = ("gsm8k", "main")
|
| 45 |
-
split: str = "test"
|
| 46 |
-
# metrics: list[str] = field(default_factory=list)
|
| 47 |
-
metric_name: str | tuple[str, str] = ("sustech/tlem", "gsm8k")
|
| 48 |
-
input_column: str = "question"
|
| 49 |
-
label_column: str = "answer"
|
| 50 |
-
prompt: Optional[Callable | str] = None
|
| 51 |
-
|
| 52 |
-
@cached_property
|
| 53 |
-
def name(self):
|
| 54 |
-
return (
|
| 55 |
-
self.dataset_name
|
| 56 |
-
if isinstance(self.dataset_name, str)
|
| 57 |
-
else self.dataset_name[0]
|
| 58 |
-
) + f"-{self.split}"
|
| 59 |
-
|
| 60 |
-
@cached_property
|
| 61 |
-
def samples(self):
|
| 62 |
-
return self.dataset[self.input_column]
|
| 63 |
-
|
| 64 |
-
@cached_property
|
| 65 |
-
def dataset(self):
|
| 66 |
-
ds = load_dataset(
|
| 67 |
-
*self.dataset_name
|
| 68 |
-
if isinstance(self.dataset_name, tuple)
|
| 69 |
-
else self.dataset_name,
|
| 70 |
-
split=self.split,
|
| 71 |
-
)
|
| 72 |
-
if self.prompt is not None:
|
| 73 |
-
ds = ds.map(
|
| 74 |
-
lambda example: {
|
| 75 |
-
self.input_column: self.prompt.format(
|
| 76 |
-
input_column=example[self.input_column]
|
| 77 |
-
)
|
| 78 |
-
}
|
| 79 |
-
if isinstance(self.prompt, str)
|
| 80 |
-
else self.prompt(example),
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
return ds
|
| 84 |
-
|
| 85 |
-
@cached_property
|
| 86 |
-
def metric(self):
|
| 87 |
-
metric = (
|
| 88 |
-
load(self.metric_name)
|
| 89 |
-
if isinstance(self.metric_name, str)
|
| 90 |
-
else load(*self.metric_name)
|
| 91 |
-
)
|
| 92 |
-
return metric
|
| 93 |
-
|
| 94 |
-
def run(self, pipeline: TextGenerationPipeline = fake_pipeline):
|
| 95 |
-
outputs = pipeline(self.samples)
|
| 96 |
-
return self.metric.compute(
|
| 97 |
-
responses=outputs, references=self.dataset[self.label_column]
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
class Metrics:
|
| 102 |
-
def gsm8k(responses: list[str], answers: list[str | int]):
|
| 103 |
-
scores = []
|
| 104 |
-
for response, answer in zip(responses, answers):
|
| 105 |
-
pred = extract_numeric(response)
|
| 106 |
-
gold = extract_numeric(answer) if isinstance(answer, str) else str(answer)
|
| 107 |
-
scores.append(1.0 * (pred == gold))
|
| 108 |
-
return scores
|
| 109 |
-
|
| 110 |
-
def MATH(responses: list[str], answers: list[str]):
|
| 111 |
-
scores = []
|
| 112 |
-
|
| 113 |
-
for response, answer in zip(responses, answers):
|
| 114 |
-
indices = [pos for pos, char in enumerate(response) if char == "$"]
|
| 115 |
-
if len(indices) <= 2:
|
| 116 |
-
scores.append(0)
|
| 117 |
-
continue
|
| 118 |
-
else:
|
| 119 |
-
result = response[indices[-2] + 1 : indices[-1]]
|
| 120 |
-
gold = get_answer(answer)
|
| 121 |
-
scores.append(1.0 * is_equiv(result, gold))
|
| 122 |
-
|
| 123 |
-
return scores
|
| 124 |
-
|
| 125 |
-
def math23k(responses: list[str], answers: list[str]):
|
| 126 |
-
scores = []
|
| 127 |
-
for response, answer in zip(responses, answers):
|
| 128 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 129 |
-
gold = extract_numeric(answer, pattern=NUMERIC_IN_ZH)
|
| 130 |
-
scores.append(1.0 * (pred == gold))
|
| 131 |
-
return scores
|
| 132 |
-
|
| 133 |
-
def gsm8k_zh(responses: list[str], answers: list[str]):
|
| 134 |
-
scores = []
|
| 135 |
-
for response, answer in zip(responses, answers):
|
| 136 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 137 |
-
gold = extract_numeric(answer)
|
| 138 |
-
scores.append(1.0 * (pred == gold))
|
| 139 |
-
return scores
|
| 140 |
-
|
| 141 |
-
def svamp(responses: list[float], answers: list[str]):
|
| 142 |
-
scores = []
|
| 143 |
-
for response, answer in zip(responses, answers):
|
| 144 |
-
pred = extract_numeric(response, pattern=NUMERIC_IN_ZH)
|
| 145 |
-
gold = answer
|
| 146 |
-
scores.append(1.0 * (float(pred) == gold))
|
| 147 |
-
return scores
|
| 148 |
-
|
| 149 |
-
def mmlu(responses, answers):
|
| 150 |
-
scores = []
|
| 151 |
-
for response, answer in zip(responses, answers):
|
| 152 |
-
pred = extract_choice_ans(response)
|
| 153 |
-
gold = answer.lower()
|
| 154 |
-
scores.append(1.0 * (pred == gold))
|
| 155 |
-
return scores
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
import evaluate
|
| 159 |
-
import numpy as np
|
| 160 |
-
|
| 161 |
-
import datasets
|
| 162 |
|
| 163 |
|
| 164 |
# TODO: Add BibTeX citation
|
|
@@ -276,10 +137,3 @@ class Suite(EvaluationSuite):
|
|
| 276 |
|
| 277 |
# %%
|
| 278 |
|
| 279 |
-
if __name__ == "__main__":
|
| 280 |
-
# metric = load("sustech/tlem", "gsm8k")
|
| 281 |
-
# output = metric.compute(responses=["answer is 2", "1+2"], references=["2", "3"])
|
| 282 |
-
# logging.info(output)
|
| 283 |
-
suite = EvaluationSuite.load("sustech/tlem")
|
| 284 |
-
suite.run(fake_pipeline)
|
| 285 |
-
# %%
|
|
|
|
| 8 |
from typing import Any, Optional, Protocol, Iterable, Callable
|
| 9 |
from tqdm.auto import tqdm
|
| 10 |
from evaluate.evaluation_suite import EvaluationSuite
|
| 11 |
+
import evaluate
|
| 12 |
+
import numpy as np
|
| 13 |
+
import datasets
|
| 14 |
+
from tasks import Task, Metrics, fake_pipeline
|
| 15 |
+
from utils import is_equiv
|
| 16 |
|
| 17 |
# %%
|
| 18 |
|
|
|
|
| 20 |
|
| 21 |
# %load_ext ipytorch
|
| 22 |
# %ls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
# TODO: Add BibTeX citation
|
|
|
|
| 137 |
|
| 138 |
# %%
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|