Spaces:
Running
Running
File size: 24,482 Bytes
1b46363 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
from langgraph.graph import StateGraph, START, END
# from llm_initializer import initialize_llm, generate_prompt_phi4
from langgraph.graph import MessagesState
from langchain_core.messages import ToolMessage, HumanMessage, SystemMessage
from typing_extensions import Literal, TypedDict
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, validator
from typing import List, Optional, Dict, Any, TypedDict,Generic, TypeVar
import uuid
import io
import os
import PyPDF2
import re
import logging
import time
from docx import Document as dx
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
DirectoryLoader,
PyPDFLoader,
TextLoader
)
import tempfile
import faiss
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_huggingface import HuggingFaceEmbeddings
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, END
from sqlalchemy import create_engine, Column, String, Integer, DateTime, ForeignKey, Text
from sqlalchemy.dialects.sqlite import JSON as SQLiteJSON
# from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, relationship
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from langchain_google_genai import ChatGoogleGenerativeAI
import datetime
from enum import Enum as PyEnum
from sqlalchemy.orm import DeclarativeBase
# from config import Config
from functools import lru_cache
from dotenv import load_dotenv
load_dotenv()
hf_token = os.getenv("hf_user_token")
login(hf_token)
T = TypeVar("T")
# --- 1. Database Setup ---
DATABASE_URL = "sqlite:///Db_domain_agent.db"
engine = create_engine(DATABASE_URL)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
class Base(DeclarativeBase):
pass
class FeedbackScore(PyEnum):
POSITIVE = 1
NEGATIVE = -1
class Telemetry(Base):
__tablename__ = "telemetry_table"
transaction_id = Column(String, primary_key=True)
session_id = Column(String)
user_question = Column(Text)
response = Column(Text)
context = Column(Text)
model_name = Column(String)
input_tokens = Column(Integer)
output_tokens = Column(Integer)
total_tokens = Column(Integer)
latency = Column(Integer)
dtcreatedon = Column(DateTime)
feedback = relationship("Feedback", back_populates="telemetry_entry", uselist=False)
class Feedback(Base):
__tablename__ = "feedback_table"
id = Column(Integer, primary_key=True, autoincrement=True)
telemetry_entry_id = Column(String, ForeignKey("telemetry_table.transaction_id"), nullable=False, unique=True)
feedback_score = Column(Integer, nullable=False)
feedback_text = Column(Text, nullable=True)
user_query = Column(Text, nullable=False)
llm_response = Column(Text, nullable=False)
timestamp = Column(DateTime, default=datetime.datetime.now)
telemetry_entry = relationship("Telemetry", back_populates="feedback")
class ConversationHistory(Base):
__tablename__ = "conversation_history"
session_id = Column(String, primary_key=True)
messages = Column(SQLiteJSON, nullable=False)
last_updated = Column(DateTime, default=datetime.datetime.now)
Base.metadata.create_all(bind=engine)
# --- 2. Initialize LLM and Embeddings ---
gak = os.getenv("Gapi_key")
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-lite",google_api_key=gak)
# embedding_model = SentenceTransformer("ibm-granite/granite-embedding-english-r2")
# my_model_name = "gemma3:1b-it-qat"
# llm = ChatOllama(model=my_model_name)
embedding_model = HuggingFaceEmbeddings(
model_name="ibm-granite/granite-embedding-english-r2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': False}
)
# --- 3. LangGraph State and Workflow ---
class GraphState(TypedDict):
chat_history: List[Dict[str, Any]]
retrieved_documents: List[str]
user_question: str
decision:str
session_id: str
telemetry_id: Optional[str] = None
class Route(BaseModel):
step: Literal['HR Agent','Finance Agent','Legal Compliance Agent'] = Field(
None, description="The next step in routing process"
)
router = llm.with_structured_output(Route)
# class State(TypedDict):
# input:str
# decision:str
# output:str
chathistory = {}
def retrieve_documents(state: GraphState):
# global vectorstore_retriever
# upload_documents()
saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
user_question = state["user_question"]
# meta_filter = {'Domain':'HR'}
if saved_vectorstore_index is None:
raise ValueError("Knowledge base not loaded.")
retrieved_docs = saved_vectorstore_index.as_retriever(search_type="mmr", search_kwargs={"k": 5})
top_docs = retrieved_docs.invoke(user_question)
print("Top Docs: ", top_docs)
retrieved_docs_content = [doc.page_content if doc.page_content else doc for doc in top_docs]
print("retrieved_documents List: ", retrieved_docs_content)
return {"retrieved_documents": retrieved_docs_content}
def generate_response(user_question, retrieved_documents):
print("Inside generate_response--------------")
global llm
global chathistory
global agent_name
# user_question = state["user_question"]
# retrieved_documents = state["retrieved_documents"]
formatted_chat_history = []
for msg in chathistory["chat_history"]:
if msg['role'] == 'user':
formatted_chat_history.append(HumanMessage(content=msg['content']))
elif msg['role'] == 'assistant':
formatted_chat_history.append(AIMessage(content=msg['content']))
if not retrieved_documents:
response_content = "I couldn't find any relevant information in the uploaded documents for your question. Can you please rephrase or provide more context?"
response_obj = AIMessage(content=response_content)
else:
context = "\n\n".join(retrieved_documents)
template = """
You are a helpful AI assistant. Answer the user's question based on the provided context {context} and the conversation history {chat_history}.
If the answer is not in the context, state that you don't have enough information.
Do not make up answers. Only use the given context and chat_history.
Remove unwanted words like 'Response:' or 'Answer:' from answers.
\n\nHere is the Question:\n{user_question}
"""
rag_prompt = PromptTemplate(
input_variables=["context", "chat_history", "user_question"],
template=template
)
rag_chain = rag_prompt | llm
time.sleep(3)
response_obj = rag_chain.invoke({
"context": [SystemMessage(content=context)],
"chat_history": formatted_chat_history,
"user_question": [HumanMessage(content=user_question)]
})
telemetry_data = response_obj.model_dump()
input_tokens = telemetry_data.get('usage_metadata', {}).get('input_tokens', 0)
output_tokens = telemetry_data.get('usage_metadata', {}).get('output_tokens', 0)
total_tokens = telemetry_data.get('usage_metadata', {}).get('total_tokens', 0)
model_name = telemetry_data.get('response_metadata', {}).get('model', 'unknown')
total_duration = telemetry_data.get('response_metadata', {}).get('total_duration', 0)
db = SessionLocal()
transaction_id = str(uuid.uuid4())
try:
telemetry_record = Telemetry(
transaction_id=transaction_id,
session_id=chathistory.get("session_id"),
user_question=user_question,
response=response_obj.content,
context="\n\n".join(retrieved_documents) if retrieved_documents else "No documents retrieved",
model_name=model_name,
input_tokens=input_tokens,
output_tokens=output_tokens,
total_tokens=total_tokens,
latency=total_duration,
dtcreatedon=datetime.datetime.now()
)
db.add(telemetry_record)
new_messages = chathistory["chat_history"] + [
{"role": "user", "content": user_question},
{"role": "assistant", "content": response_obj.content, "telemetry_id": transaction_id}
]
# --- FIX: Refactored Database Save Logic ---
print(f"Saving conversation for session_id: {chathistory.get('session_id')}")
conversation_entry = db.query(ConversationHistory).filter_by(session_id=chathistory.get("session_id")).first()
if conversation_entry:
print(f"Updating existing conversation for session_id: {chathistory.get('session_id')}")
conversation_entry.messages = new_messages
conversation_entry.last_updated = datetime.datetime.now()
else:
print(f"Creating new conversation for session_id: {chathistory.get('session_id')}")
new_conversation_entry = ConversationHistory(
session_id=chathistory.get("session_id"),
messages=new_messages,
last_updated=datetime.datetime.now()
)
db.add(new_conversation_entry)
db.commit()
print(f"Successfully saved conversation for session_id: {chathistory.get('session_id')}")
except Exception as e:
db.rollback()
print(f"***CRITICAL ERROR***: Failed to save data to database. Error: {e}")
finally:
db.close()
return {
"chat_history": new_messages,
"telemetry_id": transaction_id,
"agent_name": agent_name
}
agent_name = ""
def hr_agent(state:GraphState):
"""Answer the user question based on Human Resource(HR)"""
global agent_name
user_question = state["user_question"]
retrieved_documents = state["retrieved_documents"]
print("HR Agent")
agent_name = "HR Agent"
result = generate_response(user_question,retrieved_documents)
# return {"output":result}
return result
def finance_agent(state:GraphState):
"""Answer the user question based on Finance and Bank"""
global agent_name
user_question = state["user_question"]
retrieved_documents = state["retrieved_documents"]
print("Finance Agent")
agent_name = "Finance Agent"
result = generate_response(user_question,retrieved_documents)
return result
def legals_agent(state:GraphState):
"""Answer the user question based on Legal Compliance"""
global agent_name
user_question = state["user_question"]
retrieved_documents = state["retrieved_documents"]
print("LC agent")
agent_name = "Legal Compliance Agent"
result = generate_response(user_question,retrieved_documents)
# return {"output":result}
return result
def llm_call_router(state:GraphState):
decision = router.invoke(
[
SystemMessage(
content="Route the user_question to HR Agent, Finance Agent, Legal Compliance Agent based on the user's request"
),
HumanMessage(
content=state['user_question']
),
]
)
return {"decision":decision.step}
def route_decision(state:GraphState):
if state['decision'] == 'HR Agent':
return "hr_agent"
elif state['decision'] == 'Finance Agent':
return "finance_agent"
elif state['decision'] == 'Legal Compliance Agent':
return "legals_agent"
router_builder = StateGraph(GraphState)
router_builder.add_node("retrieve", retrieve_documents)
router_builder.add_node("hr_agent", hr_agent)
router_builder.add_node("finance_agent", finance_agent)
router_builder.add_node("legals_agent", legals_agent)
router_builder.add_node("llm_call_router", llm_call_router)
# router_builder.add_node("generate", generate_response)
# router_builder.set_entry_point("retrieve")
# router_builder.add_edge("retrieve", "generate")
# router_builder.add_edge("generate", END)
# compiled_app = workflow.compile(checkpointer=memory)
router_builder.add_edge(START, "llm_call_router")
router_builder.add_conditional_edges(
"llm_call_router",
route_decision,
{
"hr_agent":"hr_agent",
"finance_agent":"finance_agent",
"legals_agent":"legals_agent",
},
)
router_builder.set_entry_point("retrieve")
router_builder.add_edge("retrieve","llm_call_router")
router_builder.add_edge("hr_agent",END)
router_builder.add_edge("finance_agent",END)
router_builder.add_edge("legals_agent",END)
route_workflow = router_builder.compile()
# state = route_workflow.invoke({'input': "Write a poem about a wicked cat"})
# print(state['output'])
vectorstore_retriever = None
compiled_app = None
memory = MemorySaver()
# --- 4. LangGraph Nodes ---
# def load_documents(state:GraphState):
# global selected_domain
# --- 5. API Models ---
class ChatHistoryEntry(BaseModel):
role: str
content: str
telemetry_id: Optional[str] = None
class ChatRequest(BaseModel):
user_question: str
session_id: str
chat_history: Optional[List[ChatHistoryEntry]] = Field(default_factory=list)
@validator('user_question')
def validate_prompt(cls, v):
v = v.strip()
if not v:
raise ValueError('Question cannot be empty')
return v
class ChatResponse(BaseModel):
ai_response: str
updated_chat_history: List[ChatHistoryEntry]
telemetry_entry_id: str
is_restricted: bool = False
moderation_reason: Optional[str] = None
class FeedbackRequest(BaseModel):
session_id: str
telemetry_entry_id: str
feedback_score: int
feedback_text: Optional[str] = None
class ConversationSummary(BaseModel):
session_id: str
title: str
@lru_cache(maxsize=5)
def process_text(file):
string_data = (file.read()).decode("utf-8")
return string_data
@lru_cache(maxsize=5)
def process_pdf(file):
pdf_bytes = io.BytesIO(file.read())
reader = PyPDF2.PdfReader(pdf_bytes)
pdf_text = "".join([page.extract_text() + "\n" for page in reader.pages])
return pdf_text
@lru_cache(maxsize=5)
def process_docx(file):
docx_bytes = io.BytesIO(file.read())
docx_docs = dx(docx_bytes)
docx_content = "\n".join([para.text for para in docx_docs.paragraphs])
return docx_content
# @app.post("/upload-documents")
# def upload_documents(files):
def upload_documents():
global vectorstore_retriever
# saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
try:
saved_vectorstore_index = faiss.read_index("domain_index_sec.faiss")
if saved_vectorstore_index:
vectorstore_retriever = saved_vectorstore_index
msg = f"Successfully loaded the knowledge base."
return msg, True
except Exception as e:
print("unable to find index...", e)
print("Creating new index.....")
all_documents = []
hr_loader = PyPDFLoader("D:\Pdf_data\Developments_in_HR_management_in_QAAs.pdf").load()
hr_finance = PyPDFLoader("D:\Pdf_data\White Paper_QA Practice.pdf").load()
hr_legal = PyPDFLoader("D:\Pdf_data\Legal-Aspects-Compliances.pdf").load()
for doc in hr_loader:
doc.metadata['Domain'] = 'HR'
all_documents.append(doc)
for doc in hr_finance:
doc.metadata['Domain'] = 'Finance'
all_documents.append(doc)
for doc in hr_legal:
doc.metadata['Domain'] = 'Legal'
all_documents.append(doc)
# for uploaded_file in files:
# doc_loader = PyPDFLoader(uploaded_file)
# all_documents.extend(doc_loader.load())
if not all_documents:
raise Exception(status_code=400, detail="No supported documents uploaded.")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
text_chunks = text_splitter.split_documents(all_documents)
print("text_chucks: ", text_chunks[:100])
# processed_chunks_with_ids = []
# for i, chunk in enumerate(text_chunks):
# # Generate a unique ID for each chunk
# # Option 1 (Recommended): Using UUID for global uniqueness
# # chunk_id = str(uuid.uuid4())
# # Option 2 (Alternative): Combining source file path with chunk index
# # This is good if you want IDs to be deterministic based on file/chunk.
# # You might need to make the file path more robust (e.g., hash it or normalize it).
# file_source = chunk.metadata.get('source', 'unknown_source')
# chunk_id = f"{file_source.replace('.','_')}_chunk_{i}"
# # Add the unique ID to the chunk's metadata
# # It's good practice to keep original metadata and just add your custom ID.
# chunk.metadata['doc_id'] = chunk_id
# processed_chunks_with_ids.append(chunk)
# embeddings = [embedding_model.encode(doc_chunks.page_content, convert_to_numpy=True) for doc_chunks in processed_chunks_with_ids]
print(f"Split {len(text_chunks)} chunks.")
print(f"Assigned unique 'doc_id' to each chunk in metadata.")
# dimension = 768
# # hnsw_m = 32
# # index = faiss.IndexHNSWFlat(dimension, hnsw_m, faiss.METRIC_INNER_PRODUCT)
# index = faiss.IndexFlatL2(dimension)
# vector_store = FAISS(
# embedding_function=embedding_model.embed_query,
# index=index,
# docstore= InMemoryDocstore(),
# index_to_docstore_id={}
# )
vectorstore = FAISS.from_documents(documents=text_chunks, embedding=embedding_model)
# vectorstore.add_documents(text_chunks, ids = [cid.metadata['doc_id'] for cid in text_chunks])
vectorstore.add_documents(text_chunks)
# vectorstore_retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
faiss.write_index(vectorstore.index, "domain_index_sec.faiss")
# vectorstore.save_local("domain_index")
vectorstore_retriever = vectorstore
if vectorstore:
msg = f"Successfully loaded the knowledge base."
return msg, True
else:
msg = f"Failed to process documents."
return msg, False
# @app.post("/chat", response_model=ChatResponse)
def chat_with_rag(chatdata):
global compiled_app
global vectorstore_retriever
global chathistory
if vectorstore_retriever is None:
raise Exception(status_code=400, detail="Knowledge base not loaded. Please upload documents first.")
print(f"Received request: {chatdata}")
# moderation_result = moderator.moderate_content(request.user_question)
# if moderation_result["is_restricted"]:
# # Get appropriate response based on restriction type
# response_type = moderation_result.get("response_type", "general")
# response_text = Config.RESTRICTED_RESPONSES.get(
# response_type,
# Config.RESTRICTED_RESPONSES["general"]
# )
# logger.warning(
# f"Restricted query: {request.prompt[:100]}... "
# f"Reason: {moderation_result['reason']}"
# )
# return ChatResponse(
# ai_response=response_text,
# updated_chat_history=[],
# telemetry_entry_id=request.session_id,
# is_restricted=True,
# moderation_reason=moderation_result["reason"],
# )
print("✅ Question passed the RAI check.........")
print("Received data from UI: ", chatdata)
chathistory = chatdata
initial_state = {
# "chat_history": [msg.model_dump() for msg in chatdata.get('chat_history')],
"chat_history": [msg for msg in chatdata.get('chat_history')],
"retrieved_documents": [],
"user_question": chatdata.get('user_question'),
"session_id": chatdata.get('session_id')
}
try:
config = {"configurable": {"thread_id": chatdata.get('session_id')}}
final_state = route_workflow.invoke(initial_state, config=config)
# chathistory = final_state
print("chathistory inside chat_with_rag-----------------")
print("Final State--- : ", final_state)
ai_response_message = final_state["chat_history"][-1]["content"]
updated_chat_history_dicts = final_state["chat_history"]
agent_name = final_state.get("decision","No Agent")
response_chat = ChatResponse(
ai_response=ai_response_message,
updated_chat_history=updated_chat_history_dicts,
telemetry_entry_id=final_state.get("telemetry_id"),
is_restricted=False,
)
return agent_name,response_chat.dict()
except Exception as e:
print(f"Internal Server Error: {e}")
raise Exception(status_code=500, detail=f"An error occurred during chat processing: {e}")
def submit_feedback(feedbackdata):
db = SessionLocal()
try:
telemetry_record = db.query(Telemetry).filter(
Telemetry.transaction_id == feedbackdata['telemetry_entry_id'],
Telemetry.session_id == feedbackdata['session_id']
).first()
if not telemetry_record:
raise Exception(status_code=404, detail="Telemetry entry not found or session ID mismatch.")
existing_feedback = db.query(Feedback).filter(
Feedback.telemetry_entry_id == feedbackdata['telemetry_entry_id']
).first()
if existing_feedback:
existing_feedback.feedback_score = feedbackdata['feedback_score']
existing_feedback.feedback_text = feedbackdata['feedback_text']
existing_feedback.timestamp = datetime.datetime.now()
else:
feedback_record = Feedback(
telemetry_entry_id=feedbackdata['telemetry_entry_id'],
feedback_score=feedbackdata['feedback_score'],
feedback_text=feedbackdata['feedback_text'],
user_query=telemetry_record.user_question,
llm_response=telemetry_record.response,
timestamp=datetime.datetime.now()
)
db.add(feedback_record)
db.commit()
return {"message": "Feedback submitted successfully."}
except Exception as e:
raise e
except Exception as e:
db.rollback()
raise Exception(status_code=500, detail=f"An error occurred: {str(e)}")
finally:
db.close()
# @app.get("/conversations", response_model=List[ConversationSummary])
def get_conversations():
db = SessionLocal()
try:
conversations = db.query(ConversationHistory).order_by(ConversationHistory.last_updated.desc()).all()
summaries = []
for conv in conversations:
for msg in conv.messages:
print(msg)
first_user_message = next((msg for msg in conv.messages if msg["role"] == "user"), None)
title = first_user_message.get("content") if first_user_message else "New Conversation"
summaries.append({"session_id":conv.session_id, "title":title[:30] + "..." if len(title) > 30 else title})
return summaries
finally:
db.close()
# @app.get("/conversations/{session_id}", response_model=List[ChatHistoryEntry])
def get_conversation_history(session_id: str):
db = SessionLocal()
try:
conversation = db.query(ConversationHistory).filter(ConversationHistory.session_id == session_id).first()
if not conversation:
raise Exception(status_code=404, detail="Conversation not found.")
return conversation.messages
finally:
db.close()
# if 'selected_model' not in st.session_state:
# st.session_state.selected_model = ""
# @st.dialog("Choose a domain")
# def domain_modal():
# domain = st.selectbox("Select a domain",["HR","Finance","Legal"])
# st.session_state.selected_model = domain
# if st.button("submit"):
# st.rerun()
# domain_modal()
# print("Selected Domain: ",st.session_state['selected_model'])
# llm = initialize_llm()
|