File size: 24,482 Bytes
1b46363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
from langgraph.graph import StateGraph, START, END
# from llm_initializer import initialize_llm, generate_prompt_phi4
from langgraph.graph import MessagesState
from langchain_core.messages import ToolMessage, HumanMessage, SystemMessage
from typing_extensions import Literal, TypedDict
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, validator
from typing import List, Optional, Dict, Any, TypedDict,Generic, TypeVar
import uuid
import io
import os
import PyPDF2
import re
import logging
import time
from docx import Document as dx
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
    DirectoryLoader,
    PyPDFLoader,
    TextLoader
)
import tempfile
import faiss
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_huggingface import HuggingFaceEmbeddings
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, END
from sqlalchemy import create_engine, Column, String, Integer, DateTime, ForeignKey, Text
from sqlalchemy.dialects.sqlite import JSON as SQLiteJSON
# from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, relationship
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from langchain_google_genai import ChatGoogleGenerativeAI
import datetime
from enum import Enum as PyEnum
from sqlalchemy.orm import DeclarativeBase
# from config import Config
from functools import lru_cache
from dotenv import load_dotenv

load_dotenv()
hf_token = os.getenv("hf_user_token")
login(hf_token)

T = TypeVar("T")
# --- 1. Database Setup ---
DATABASE_URL = "sqlite:///Db_domain_agent.db"
engine = create_engine(DATABASE_URL)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

class Base(DeclarativeBase):
    pass

class FeedbackScore(PyEnum):
    POSITIVE = 1
    NEGATIVE = -1

class Telemetry(Base):
    __tablename__ = "telemetry_table"
    transaction_id = Column(String, primary_key=True)
    session_id = Column(String)
    user_question = Column(Text)
    response = Column(Text)
    context = Column(Text)
    model_name = Column(String)
    input_tokens = Column(Integer)
    output_tokens = Column(Integer)
    total_tokens = Column(Integer)
    latency = Column(Integer)
    dtcreatedon = Column(DateTime)
    
    feedback = relationship("Feedback", back_populates="telemetry_entry", uselist=False)

class Feedback(Base):
    __tablename__ = "feedback_table"
    id = Column(Integer, primary_key=True, autoincrement=True)
    telemetry_entry_id = Column(String, ForeignKey("telemetry_table.transaction_id"), nullable=False, unique=True)
    feedback_score = Column(Integer, nullable=False)
    feedback_text = Column(Text, nullable=True)
    user_query = Column(Text, nullable=False)
    llm_response = Column(Text, nullable=False)
    timestamp = Column(DateTime, default=datetime.datetime.now)
    
    telemetry_entry = relationship("Telemetry", back_populates="feedback")

class ConversationHistory(Base):
    __tablename__ = "conversation_history"
    session_id = Column(String, primary_key=True)
    messages = Column(SQLiteJSON, nullable=False)
    last_updated = Column(DateTime, default=datetime.datetime.now)

Base.metadata.create_all(bind=engine)
# --- 2. Initialize LLM and Embeddings ---
gak = os.getenv("Gapi_key")
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-lite",google_api_key=gak)
# embedding_model = SentenceTransformer("ibm-granite/granite-embedding-english-r2")

# my_model_name = "gemma3:1b-it-qat"
# llm = ChatOllama(model=my_model_name)
embedding_model = HuggingFaceEmbeddings(
    model_name="ibm-granite/granite-embedding-english-r2",
    model_kwargs={'device': 'cpu'},
    encode_kwargs={'normalize_embeddings': False}
)

# --- 3. LangGraph State and Workflow ---
class GraphState(TypedDict):
    chat_history: List[Dict[str, Any]]
    retrieved_documents: List[str]
    user_question: str
    decision:str
    session_id: str
    telemetry_id: Optional[str] = None

class Route(BaseModel):
    step: Literal['HR Agent','Finance Agent','Legal Compliance Agent'] = Field(
        None, description="The next step in routing process"
    )
router = llm.with_structured_output(Route)

# class State(TypedDict):
#     input:str
#     decision:str
#     output:str

chathistory = {}

def retrieve_documents(state: GraphState):
    # global vectorstore_retriever
    # upload_documents()
    saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
    user_question = state["user_question"]
    # meta_filter = {'Domain':'HR'}
    if saved_vectorstore_index is None:
        raise ValueError("Knowledge base not loaded.")
    retrieved_docs = saved_vectorstore_index.as_retriever(search_type="mmr", search_kwargs={"k": 5})
    top_docs = retrieved_docs.invoke(user_question)
    print("Top Docs: ", top_docs)
    retrieved_docs_content = [doc.page_content if doc.page_content else doc for doc in top_docs]
    print("retrieved_documents List: ", retrieved_docs_content)
    return {"retrieved_documents": retrieved_docs_content}

def generate_response(user_question, retrieved_documents):
    print("Inside generate_response--------------")
    global llm
    global chathistory
    global agent_name
    # user_question = state["user_question"]
    # retrieved_documents = state["retrieved_documents"]
    
    formatted_chat_history = []
    for msg in chathistory["chat_history"]:
        if msg['role'] == 'user':
            formatted_chat_history.append(HumanMessage(content=msg['content']))
        elif msg['role'] == 'assistant':
            formatted_chat_history.append(AIMessage(content=msg['content']))
    
    if not retrieved_documents:
        response_content = "I couldn't find any relevant information in the uploaded documents for your question. Can you please rephrase or provide more context?"
        response_obj = AIMessage(content=response_content)
    else:
        context = "\n\n".join(retrieved_documents)
        template = """
            You are a helpful AI assistant. Answer the user's question based on the provided context {context} and the conversation history {chat_history}.
            If the answer is not in the context, state that you don't have enough information.
            Do not make up answers. Only use the given context and chat_history.
            Remove unwanted words like 'Response:' or 'Answer:' from answers.
            \n\nHere is the Question:\n{user_question}
        """
        rag_prompt = PromptTemplate(
            input_variables=["context", "chat_history", "user_question"],
            template=template
        )
        rag_chain = rag_prompt | llm
        time.sleep(3)
        response_obj = rag_chain.invoke({
            "context": [SystemMessage(content=context)],
            "chat_history": formatted_chat_history,
            "user_question": [HumanMessage(content=user_question)]
        })
    
    telemetry_data = response_obj.model_dump()
    input_tokens = telemetry_data.get('usage_metadata', {}).get('input_tokens', 0)
    output_tokens = telemetry_data.get('usage_metadata', {}).get('output_tokens', 0)
    total_tokens = telemetry_data.get('usage_metadata', {}).get('total_tokens', 0)
    model_name = telemetry_data.get('response_metadata', {}).get('model', 'unknown')
    total_duration = telemetry_data.get('response_metadata', {}).get('total_duration', 0)
    
    db = SessionLocal()
    transaction_id = str(uuid.uuid4())
    try:
        telemetry_record = Telemetry(
            transaction_id=transaction_id,
            session_id=chathistory.get("session_id"),
            user_question=user_question,
            response=response_obj.content,
            context="\n\n".join(retrieved_documents) if retrieved_documents else "No documents retrieved",
            model_name=model_name,
            input_tokens=input_tokens,
            output_tokens=output_tokens,
            total_tokens=total_tokens,
            latency=total_duration,
            dtcreatedon=datetime.datetime.now()
        )
        db.add(telemetry_record)
        
        new_messages = chathistory["chat_history"] + [
            {"role": "user", "content": user_question}, 
            {"role": "assistant", "content": response_obj.content, "telemetry_id": transaction_id}
        ]
        
        # --- FIX: Refactored Database Save Logic ---
        print(f"Saving conversation for session_id: {chathistory.get('session_id')}")
        conversation_entry = db.query(ConversationHistory).filter_by(session_id=chathistory.get("session_id")).first()
        if conversation_entry:
            print(f"Updating existing conversation for session_id: {chathistory.get('session_id')}")
            conversation_entry.messages = new_messages
            conversation_entry.last_updated = datetime.datetime.now()
        else:
            print(f"Creating new conversation for session_id: {chathistory.get('session_id')}")
            new_conversation_entry = ConversationHistory(
                session_id=chathistory.get("session_id"),
                messages=new_messages,
                last_updated=datetime.datetime.now()
            )
            db.add(new_conversation_entry)
        
        db.commit()
        print(f"Successfully saved conversation for session_id: {chathistory.get('session_id')}")

    except Exception as e:
        db.rollback()
        print(f"***CRITICAL ERROR***: Failed to save data to database. Error: {e}")
    finally:
        db.close()
    
    return {
        "chat_history": new_messages,
        "telemetry_id": transaction_id,
        "agent_name": agent_name
    }

agent_name = ""
def hr_agent(state:GraphState):
    """Answer the user question based on Human Resource(HR)"""
    global agent_name
    user_question = state["user_question"]
    retrieved_documents = state["retrieved_documents"]
    print("HR Agent")
    agent_name = "HR Agent"
    result = generate_response(user_question,retrieved_documents)
    # return {"output":result}
    return result

def finance_agent(state:GraphState):
    """Answer the user question based on Finance and Bank"""
    global agent_name
    user_question = state["user_question"]
    retrieved_documents = state["retrieved_documents"]
    print("Finance Agent")
    agent_name = "Finance Agent"
    result = generate_response(user_question,retrieved_documents)
    return result

def legals_agent(state:GraphState):
    """Answer the user question based on Legal Compliance"""
    global agent_name
    user_question = state["user_question"]
    retrieved_documents = state["retrieved_documents"]
    print("LC agent")
    agent_name = "Legal Compliance Agent"
    result = generate_response(user_question,retrieved_documents)
    # return {"output":result}
    return result

def llm_call_router(state:GraphState):
    decision = router.invoke(
        [
            SystemMessage(
                content="Route the user_question to HR Agent, Finance Agent, Legal Compliance Agent based on the user's request"
            ),
            HumanMessage(
                content=state['user_question']
            ),
        ]
    )
    return {"decision":decision.step}

def route_decision(state:GraphState):
    
    if state['decision'] == 'HR Agent':
        return "hr_agent"
    elif state['decision'] == 'Finance Agent':
        return "finance_agent"
    elif state['decision'] == 'Legal Compliance Agent':
        return "legals_agent"
    
router_builder = StateGraph(GraphState)

router_builder.add_node("retrieve", retrieve_documents)
router_builder.add_node("hr_agent", hr_agent)
router_builder.add_node("finance_agent", finance_agent)
router_builder.add_node("legals_agent", legals_agent)
router_builder.add_node("llm_call_router", llm_call_router)

# router_builder.add_node("generate", generate_response)
# router_builder.set_entry_point("retrieve")
# router_builder.add_edge("retrieve", "generate")
# router_builder.add_edge("generate", END)
# compiled_app = workflow.compile(checkpointer=memory)


router_builder.add_edge(START, "llm_call_router")
router_builder.add_conditional_edges(
    "llm_call_router",
    route_decision,
    {
        "hr_agent":"hr_agent",
        "finance_agent":"finance_agent",
        "legals_agent":"legals_agent",
    },
)
router_builder.set_entry_point("retrieve")
router_builder.add_edge("retrieve","llm_call_router")
router_builder.add_edge("hr_agent",END)
router_builder.add_edge("finance_agent",END)
router_builder.add_edge("legals_agent",END)

route_workflow = router_builder.compile()

# state = route_workflow.invoke({'input': "Write a poem about a wicked cat"})
# print(state['output'])



vectorstore_retriever = None
compiled_app = None
memory = MemorySaver()

# --- 4. LangGraph Nodes ---
# def load_documents(state:GraphState):
#     global selected_domain







# --- 5. API Models ---
class ChatHistoryEntry(BaseModel):
    role: str
    content: str
    telemetry_id: Optional[str] = None

class ChatRequest(BaseModel):
    user_question: str
    session_id: str
    chat_history: Optional[List[ChatHistoryEntry]] = Field(default_factory=list)

    @validator('user_question')
    def validate_prompt(cls, v):
        v = v.strip()
        if not v:
            raise ValueError('Question cannot be empty')
        return v

class ChatResponse(BaseModel):
    ai_response: str
    updated_chat_history: List[ChatHistoryEntry]
    telemetry_entry_id: str
    is_restricted: bool = False
    moderation_reason: Optional[str] = None

class FeedbackRequest(BaseModel):
    session_id: str
    telemetry_entry_id: str
    feedback_score: int
    feedback_text: Optional[str] = None

class ConversationSummary(BaseModel):
    session_id: str
    title: str


@lru_cache(maxsize=5)
def process_text(file):
    string_data = (file.read()).decode("utf-8")
    return string_data
    
@lru_cache(maxsize=5)
def process_pdf(file):
    pdf_bytes = io.BytesIO(file.read())
    reader = PyPDF2.PdfReader(pdf_bytes)
    pdf_text = "".join([page.extract_text() + "\n" for page in reader.pages])
    return pdf_text
    
@lru_cache(maxsize=5)
def process_docx(file):
    docx_bytes = io.BytesIO(file.read())
    docx_docs = dx(docx_bytes)
    docx_content = "\n".join([para.text for para in docx_docs.paragraphs])
    return docx_content
    

# @app.post("/upload-documents")
# def upload_documents(files):
def upload_documents():
    global vectorstore_retriever
    # saved_vectorstore_index = FAISS.load_local('domain_index', embedding_model,allow_dangerous_deserialization=True)
    try:
        saved_vectorstore_index = faiss.read_index("domain_index_sec.faiss")
        if saved_vectorstore_index:
            vectorstore_retriever = saved_vectorstore_index

            msg = f"Successfully loaded the knowledge base."
            return msg, True
    except Exception as e:
        print("unable to find index...", e)
        print("Creating new index.....")
        all_documents = []
        hr_loader = PyPDFLoader("D:\Pdf_data\Developments_in_HR_management_in_QAAs.pdf").load()
        hr_finance = PyPDFLoader("D:\Pdf_data\White Paper_QA Practice.pdf").load()
        hr_legal = PyPDFLoader("D:\Pdf_data\Legal-Aspects-Compliances.pdf").load()

        for doc in hr_loader:
            doc.metadata['Domain'] = 'HR'
            all_documents.append(doc)
        for doc in hr_finance:
            doc.metadata['Domain'] = 'Finance'
            all_documents.append(doc)
        for doc in hr_legal:
            doc.metadata['Domain'] = 'Legal'
            all_documents.append(doc)
        # for uploaded_file in files:
            # doc_loader = PyPDFLoader(uploaded_file)
            # all_documents.extend(doc_loader.load())
        
        if not all_documents:
            raise Exception(status_code=400, detail="No supported documents uploaded.")

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
        text_chunks = text_splitter.split_documents(all_documents)
        print("text_chucks: ", text_chunks[:100])

        # processed_chunks_with_ids = []
        # for i, chunk in enumerate(text_chunks):
        #     # Generate a unique ID for each chunk
        #     # Option 1 (Recommended): Using UUID for global uniqueness
        #     # chunk_id = str(uuid.uuid4())
            
        #     # Option 2 (Alternative): Combining source file path with chunk index
        #     # This is good if you want IDs to be deterministic based on file/chunk.
        #     # You might need to make the file path more robust (e.g., hash it or normalize it).
        #     file_source = chunk.metadata.get('source', 'unknown_source')
        #     chunk_id = f"{file_source.replace('.','_')}_chunk_{i}"

        #     # Add the unique ID to the chunk's metadata
        #     # It's good practice to keep original metadata and just add your custom ID.
        #     chunk.metadata['doc_id'] = chunk_id
            
            
        #     processed_chunks_with_ids.append(chunk)
        # embeddings = [embedding_model.encode(doc_chunks.page_content, convert_to_numpy=True) for doc_chunks in processed_chunks_with_ids]
        
        print(f"Split {len(text_chunks)} chunks.")
        print(f"Assigned unique 'doc_id' to each chunk in metadata.")
        # dimension = 768
        # # hnsw_m = 32
        # # index = faiss.IndexHNSWFlat(dimension, hnsw_m, faiss.METRIC_INNER_PRODUCT)
        # index = faiss.IndexFlatL2(dimension)
        # vector_store = FAISS(
        #     embedding_function=embedding_model.embed_query,
        #     index=index,
        #     docstore= InMemoryDocstore(),
        #     index_to_docstore_id={}
        # )
        vectorstore = FAISS.from_documents(documents=text_chunks, embedding=embedding_model)
        # vectorstore.add_documents(text_chunks, ids = [cid.metadata['doc_id'] for cid in text_chunks])
        vectorstore.add_documents(text_chunks)
        # vectorstore_retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
        faiss.write_index(vectorstore.index, "domain_index_sec.faiss")
        # vectorstore.save_local("domain_index")
        vectorstore_retriever = vectorstore
        if vectorstore:
            msg = f"Successfully loaded the knowledge base."
            return msg, True
        else:
            msg = f"Failed to process documents."
            return msg, False

# @app.post("/chat", response_model=ChatResponse)
def chat_with_rag(chatdata):
    global compiled_app
    global vectorstore_retriever
    global chathistory
    if vectorstore_retriever is None:
        raise Exception(status_code=400, detail="Knowledge base not loaded. Please upload documents first.")
    print(f"Received request: {chatdata}")
    # moderation_result = moderator.moderate_content(request.user_question)
    # if moderation_result["is_restricted"]:
    #     # Get appropriate response based on restriction type
    #     response_type = moderation_result.get("response_type", "general")
    #     response_text = Config.RESTRICTED_RESPONSES.get(
    #         response_type, 
    #         Config.RESTRICTED_RESPONSES["general"]
    #     )
        
    #     logger.warning(
    #         f"Restricted query: {request.prompt[:100]}... "
    #         f"Reason: {moderation_result['reason']}"
    #     )
        
    #     return ChatResponse(
    #         ai_response=response_text,
    #         updated_chat_history=[],
    #         telemetry_entry_id=request.session_id,
    #         is_restricted=True,
    #         moderation_reason=moderation_result["reason"],
    #     )
    print("✅ Question passed the RAI check.........")
    print("Received data from UI: ", chatdata)
    chathistory = chatdata
    initial_state = {
        # "chat_history": [msg.model_dump() for msg in chatdata.get('chat_history')],
        "chat_history": [msg for msg in chatdata.get('chat_history')],
        "retrieved_documents": [],
        "user_question": chatdata.get('user_question'),
        "session_id": chatdata.get('session_id')
    }

    try:
        config = {"configurable": {"thread_id": chatdata.get('session_id')}}
        final_state = route_workflow.invoke(initial_state, config=config)

        # chathistory = final_state
        print("chathistory inside chat_with_rag-----------------")
        print("Final State--- : ", final_state)

        ai_response_message = final_state["chat_history"][-1]["content"]
        updated_chat_history_dicts = final_state["chat_history"]
        agent_name = final_state.get("decision","No Agent")

        response_chat = ChatResponse(
            ai_response=ai_response_message,
            updated_chat_history=updated_chat_history_dicts,
            telemetry_entry_id=final_state.get("telemetry_id"),
            is_restricted=False,
        )
        
        return agent_name,response_chat.dict()
    except Exception as e:
        print(f"Internal Server Error: {e}")
        raise Exception(status_code=500, detail=f"An error occurred during chat processing: {e}")


def submit_feedback(feedbackdata):
    db = SessionLocal()
    try:
        telemetry_record = db.query(Telemetry).filter(
            Telemetry.transaction_id == feedbackdata['telemetry_entry_id'],
            Telemetry.session_id == feedbackdata['session_id']
        ).first()

        if not telemetry_record:
            raise Exception(status_code=404, detail="Telemetry entry not found or session ID mismatch.")

        existing_feedback = db.query(Feedback).filter(
            Feedback.telemetry_entry_id == feedbackdata['telemetry_entry_id']
        ).first()

        if existing_feedback:
            existing_feedback.feedback_score = feedbackdata['feedback_score']
            existing_feedback.feedback_text = feedbackdata['feedback_text']
            existing_feedback.timestamp = datetime.datetime.now()
        else:
            feedback_record = Feedback(
                telemetry_entry_id=feedbackdata['telemetry_entry_id'],
                feedback_score=feedbackdata['feedback_score'],
                feedback_text=feedbackdata['feedback_text'],
                user_query=telemetry_record.user_question,
                llm_response=telemetry_record.response,
                timestamp=datetime.datetime.now()
            )
            db.add(feedback_record)
            
        db.commit()

        return {"message": "Feedback submitted successfully."}

    except Exception as e:
        raise e
    except Exception as e:
        db.rollback()
        raise Exception(status_code=500, detail=f"An error occurred: {str(e)}")
    finally:
        db.close()

# @app.get("/conversations", response_model=List[ConversationSummary])
def get_conversations():
    db = SessionLocal()
    try:
        conversations = db.query(ConversationHistory).order_by(ConversationHistory.last_updated.desc()).all()
        summaries = []
        for conv in conversations:
            for msg in conv.messages:
                print(msg)
            first_user_message = next((msg for msg in conv.messages if msg["role"] == "user"), None)
            title = first_user_message.get("content") if first_user_message else "New Conversation"
            summaries.append({"session_id":conv.session_id, "title":title[:30] + "..." if len(title) > 30 else title})
        return summaries
    finally:
        db.close()

# @app.get("/conversations/{session_id}", response_model=List[ChatHistoryEntry])
def get_conversation_history(session_id: str):
    db = SessionLocal()
    try:
        conversation = db.query(ConversationHistory).filter(ConversationHistory.session_id == session_id).first()
        if not conversation:
            raise Exception(status_code=404, detail="Conversation not found.")
        return conversation.messages
    finally:
        db.close()




# if 'selected_model' not in st.session_state:
#     st.session_state.selected_model = ""
# @st.dialog("Choose a domain")
# def domain_modal():
#     domain = st.selectbox("Select a domain",["HR","Finance","Legal"])
#     st.session_state.selected_model = domain
#     if st.button("submit"):
#         st.rerun()

# domain_modal()
# print("Selected Domain: ",st.session_state['selected_model'])

# llm = initialize_llm()