Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
| from dotenv import load_dotenv | |
| # 加載環境變量 | |
| load_dotenv() | |
| os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
| # 驗證 OpenAI API Key | |
| api_key = os.getenv('OPENAI_API_KEY') | |
| if not api_key: | |
| raise ValueError("請設置 'OPENAI_API_KEY' 環境變數") | |
| # OpenAI API key | |
| openai_api_key = api_key | |
| # 將聊天歷史轉換為適合 LangChain 的二元組格式 | |
| def transform_history_for_langchain(history): | |
| return [(chat[0], chat[1]) for chat in history if chat[0]] # 使用整數索引來訪問元組中的元素 | |
| # 將 Gradio 的歷史紀錄轉換為 OpenAI 格式 | |
| def transform_history_for_openai(history): | |
| new_history = [] | |
| for chat in history: | |
| if chat[0]: | |
| new_history.append({"role": "user", "content": chat[0]}) | |
| if chat[1]: | |
| new_history.append({"role": "assistant", "content": chat[1]}) | |
| return new_history | |
| # 載入和處理文件的函數 | |
| def load_and_process_documents(folder_path): | |
| documents = [] | |
| for file in os.listdir(folder_path): | |
| file_path = os.path.join(folder_path, file) | |
| if file.endswith(".pdf"): | |
| loader = PyPDFLoader(file_path) | |
| documents.extend(loader.load()) | |
| elif file.endswith('.docx') or file.endswith('.doc'): | |
| loader = Docx2txtLoader(file_path) | |
| documents.extend(loader.load()) | |
| elif file.endswith('.txt'): | |
| loader = TextLoader(file_path) | |
| documents.extend(loader.load()) | |
| text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10) | |
| documents = text_splitter.split_documents(documents) | |
| vectordb = Chroma.from_documents( | |
| documents, | |
| embedding=OpenAIEmbeddings(), | |
| persist_directory="./tmp" | |
| ) | |
| return vectordb | |
| # 初始化向量數據庫為全局變量 | |
| if 'vectordb' not in globals(): | |
| vectordb = load_and_process_documents("./") | |
| # 定義查詢處理函數 | |
| def handle_query(user_message, temperature, chat_history): | |
| try: | |
| if not user_message: | |
| return chat_history # 返回不變的聊天記錄 | |
| # 使用 LangChain 的 ConversationalRetrievalChain 處理查詢 | |
| preface = """ | |
| 指令: 全部以繁體中文呈現,200字以內。 | |
| 除了與文件相關內容可回答之外,與文件內容不相關的問題都必須回答:這問題很深奧,需要請示JohnLiao大神... | |
| """ | |
| query = f"{preface} 查詢內容:{user_message}" | |
| # 提取之前的回答作為上下文,並轉換成 LangChain 支持的格式 | |
| previous_answers = transform_history_for_langchain(chat_history) | |
| pdf_qa = ConversationalRetrievalChain.from_llm( | |
| ChatOpenAI(temperature=temperature, model_name='gpt-4'), | |
| retriever=vectordb.as_retriever(search_kwargs={'k': 6}), | |
| return_source_documents=True, | |
| verbose=False | |
| ) | |
| # 調用模型進行查詢 | |
| result = pdf_qa.invoke({"question": query, "chat_history": previous_answers}) | |
| # 確保 'answer' 在結果中 | |
| if "answer" not in result: | |
| return chat_history + [("系統", "抱歉,出現了一個錯誤。")] | |
| # 更新對話歷史中的 AI 回應 | |
| chat_history[-1] = (user_message, result["answer"]) # 更新最後一個記錄,配對用戶輸入和 AI 回應 | |
| return chat_history | |
| except Exception as e: | |
| return chat_history + [("系統", f"出現錯誤: {str(e)}")] | |
| # 使用 Gradio 的 Blocks API 創建自訂聊天介面 | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center;'>AI 小助教</h1>") | |
| chatbot = gr.Chatbot() | |
| state = gr.State([]) | |
| with gr.Row(): | |
| with gr.Column(scale=0.85): | |
| txt = gr.Textbox(show_label=False, placeholder="請輸入您的問題...") | |
| with gr.Column(scale=0.15, min_width=0): | |
| submit_btn = gr.Button("提問") | |
| # 用戶輸入後立即顯示提問文字,不添加回應部分,並清空輸入框 | |
| def user_input(user_message, history): | |
| history.append((user_message, "")) # 顯示提問文字,回應部分為空字符串 | |
| return history, "", history # 返回清空的輸入框以及更新的聊天歷史 | |
| # 處理 AI 回應,更新回應部分 | |
| def bot_response(history): | |
| user_message = history[-1][0] # 獲取最新的用戶輸入 | |
| history = handle_query(user_message, 0.7, history) # 調用處理函數 | |
| return history, history # 返回更新後的聊天記錄 | |
| # 先顯示提問文字,然後處理 AI 回應,並清空輸入框 | |
| submit_btn.click(user_input, [txt, state], [chatbot, txt, state], queue=False).then( | |
| bot_response, state, [chatbot, state] | |
| ) | |
| # 支援按 "Enter" 提交問題,立即顯示提問文字並清空輸入框 | |
| txt.submit(user_input, [txt, state], [chatbot, txt, state], queue=False).then( | |
| bot_response, state, [chatbot, state] | |
| ) | |
| # 啟動 Gradio 應用 | |
| demo.launch() |