Spaces:
Running
on
Zero
Running
on
Zero
| """Normalize Transform.""" | |
| from __future__ import annotations | |
| import torch | |
| from vis4d.common.typing import NDArrayF32 | |
| from ..const import CommonKeys as K | |
| from .base import Transform | |
| class NormalizeImages: | |
| """Normalize a list of image tensor with given mean and std. | |
| Image tensor is of shape [N, H, W, C] and range (0, 255). | |
| """ | |
| def __init__( | |
| self, | |
| mean: tuple[float, float, float] = (123.675, 116.28, 103.53), | |
| std: tuple[float, float, float] = (58.395, 57.12, 57.375), | |
| epsilon: float = 1e-08, | |
| ) -> None: | |
| """Creates an instance of NormalizeImage. | |
| Args: | |
| mean (Tuple[float, float, float], optional): Mean value. Defaults | |
| to (123.675, 116.28, 103.53). | |
| std (Tuple[float, float, float], optional): Standard deviation | |
| value. Defaults to (58.395, 57.12, 57.375). | |
| epsilon (float, optional): Epsilon for numerical stability of | |
| division. Defaults to 1e-08. | |
| """ | |
| self.mean = mean | |
| self.std = std | |
| self.epsilon = epsilon | |
| def __call__(self, images: list[NDArrayF32]) -> list[NDArrayF32]: | |
| """Normalize image tensor.""" | |
| for i, image in enumerate(images): | |
| img = torch.from_numpy(image).permute(0, 3, 1, 2) | |
| pixel_mean = torch.tensor(self.mean).view(-1, 1, 1) | |
| pixel_std = torch.tensor(self.std).view(-1, 1, 1) | |
| img = (img - pixel_mean) / (pixel_std + self.epsilon) | |
| images[i] = img.permute(0, 2, 3, 1).numpy() | |
| return images | |