File size: 15,822 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
"""CC-3DT graph."""

from __future__ import annotations

import torch
import torch.nn.functional as F
from torch import Tensor

from vis4d.op.box.box2d import bbox_iou
from vis4d.op.geometry.rotation import (
    euler_angles_to_matrix,
    matrix_to_quaternion,
    rotate_orientation,
    rotate_velocities,
)
from vis4d.op.geometry.transform import transform_points
from vis4d.op.track.assignment import TrackIDCounter, greedy_assign
from vis4d.op.track.matching import calc_bisoftmax_affinity

from .common import Track3DOut


def get_track_3d_out(
    boxes_3d: Tensor, class_ids: Tensor, scores_3d: Tensor, track_ids: Tensor
) -> Track3DOut:
    """Get track 3D output.

    Args:
        boxes_3d (Tensor): (N, 12): x,y,z,h,w,l,rx,ry,rz,vx,vy,vz
        class_ids (Tensor): (N,)
        scores_3d (Tensor): (N,)
        track_ids (Tensor): (N,)

    Returns:
        Track3DOut: output
    """
    center = boxes_3d[:, :3]
    # HWL -> WLH
    dims = boxes_3d[:, [4, 5, 3]]
    orientation = matrix_to_quaternion(
        euler_angles_to_matrix(boxes_3d[:, 6:9])
    )

    return Track3DOut(
        boxes_3d=[torch.cat([center, dims, orientation], dim=1)],
        velocities=[boxes_3d[:, 9:12]],
        class_ids=[class_ids],
        scores_3d=[scores_3d],
        track_ids=[track_ids],
    )


class CC3DTrackAssociation:
    """Data association relying on quasi-dense instance similarity and 3D clue.

    This class assigns detection candidates to a given memory of existing
    tracks and backdrops.
    Backdrops are low-score detections kept in case they have high
    similarity with a high-score detection in succeeding frames.
    """

    def __init__(
        self,
        init_score_thr: float = 0.8,
        obj_score_thr: float = 0.5,
        match_score_thr: float = 0.5,
        nms_backdrop_iou_thr: float = 0.3,
        nms_class_iou_thr: float = 0.7,
        nms_conf_thr: float = 0.5,
        with_cats: bool = True,
        with_velocities: bool = False,
        bbox_affinity_weight: float = 0.5,
    ) -> None:
        """Creates an instance of the class.

        Args:
            init_score_thr (float): Confidence threshold for initializing a new
                track.
            obj_score_thr (float): Confidence treshold s.t. a detection is
                considered in the track / det matching process.
            match_score_thr (float): Similarity score threshold for matching a
                detection to an existing track.
            nms_backdrop_iou_thr (float): Maximum IoU of a backdrop with
                another detection.
            nms_class_iou_thr (float): Maximum IoU of a high score detection
                with another of a different class.
            nms_conf_thr (float): Confidence threshold for NMS.
            with_cats (bool): If to consider category information for
                tracking (i.e. all detections within a track must have
                consistent category labels).
            with_velocities (bool): If to use predicted velocities for
                matching.
            bbox_affinity_weight (float): Weight of bbox affinity in the
                overall affinity score.
        """
        super().__init__()
        self.init_score_thr = init_score_thr
        self.obj_score_thr = obj_score_thr
        self.match_score_thr = match_score_thr
        self.nms_backdrop_iou_thr = nms_backdrop_iou_thr
        self.nms_class_iou_thr = nms_class_iou_thr
        self.nms_conf_thr = nms_conf_thr
        self.with_cats = with_cats
        self.with_velocities = with_velocities
        self.bbox_affinity_weight = bbox_affinity_weight
        self.feat_affinity_weight = 1 - bbox_affinity_weight

    def _filter_detections(
        self,
        detections: Tensor,
        camera_ids: Tensor,
        scores: Tensor,
        detections_3d: Tensor,
        scores_3d: Tensor,
        class_ids: Tensor,
        embeddings: Tensor,
        velocities: Tensor | None = None,
    ) -> tuple[
        Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor | None, Tensor
    ]:
        """Remove overlapping objects across classes via nms.

        Args:
            detections (Tensor): [N, 4] Tensor of boxes.
            camera_ids (Tensor): [N,] Tensor of camera ids.
            scores (Tensor): [N,] Tensor of confidence scores.
            detections_3d (Tensor): [N, 7] Tensor of 3D boxes.
            scores_3d (Tensor): [N,] Tensor of 3D confidence scores.
            class_ids (Tensor): [N,] Tensor of class ids.
            embeddings (Tensor): [N, C] tensor of appearance embeddings.
            velocities (Tensor | None): [N, 3] Tensor of velocities.

        Returns:
            tuple[Tensor]: filtered detections, scores, class_ids,
                embeddings, and filtered indices.
        """
        scores, inds = scores.sort(descending=True)
        (
            detections,
            camera_ids,
            embeddings,
            class_ids,
            detections_3d,
            scores_3d,
        ) = (
            detections[inds],
            camera_ids[inds],
            embeddings[inds],
            class_ids[inds],
            detections_3d[inds],
            scores_3d[inds],
        )

        if velocities is not None:
            velocities = velocities[inds]

        valids = embeddings.new_ones((len(detections),), dtype=torch.bool)

        ious = bbox_iou(detections, detections)
        valid_ious = torch.eq(
            camera_ids.unsqueeze(1), camera_ids.unsqueeze(0)
        ).int()
        ious *= valid_ious

        for i in range(1, len(detections)):
            if scores[i] < self.obj_score_thr:
                thr = self.nms_backdrop_iou_thr
            else:
                thr = self.nms_class_iou_thr

            if (ious[i, :i] > thr).any():
                valids[i] = False

        detections = detections[valids]
        scores = scores[valids]
        detections_3d = detections_3d[valids]
        scores_3d = scores_3d[valids]
        class_ids = class_ids[valids]
        embeddings = embeddings[valids]

        if velocities is not None:
            velocities = velocities[valids]

        return (
            detections,
            scores,
            detections_3d,
            scores_3d,
            class_ids,
            embeddings,
            velocities,
            inds[valids],
        )

    def depth_ordering(
        self,
        obsv_boxes_3d: Tensor,
        obsv_velocities: Tensor | None,
        memory_boxes_3d_predict: Tensor,
        memory_boxes_3d: Tensor,
        memory_velocities: Tensor,
    ) -> Tensor:
        """Depth ordering matching."""
        # Centroid
        centroid_weight_list = []
        for memory_box_3d_predict in memory_boxes_3d_predict:
            centroid_weight_list.append(
                F.pairwise_distance(  # pylint: disable=not-callable
                    obsv_boxes_3d[:, :3],
                    memory_box_3d_predict[:3],
                    keepdim=True,
                )
            )
        centroid_weight = torch.cat(centroid_weight_list, dim=1)
        centroid_weight = torch.exp(-torch.div(centroid_weight, 10.0))

        # Moving distance should be aligned
        motion_weight_list = []
        moving_dist = (
            obsv_boxes_3d[:, :3, None]
            - memory_boxes_3d[:, :3, None].transpose(2, 0)
        ).transpose(1, 2)
        for v in moving_dist:
            motion_weight_list.append(
                F.pairwise_distance(  # pylint: disable=not-callable
                    v, memory_velocities[:, :3]
                ).unsqueeze(0)
            )
        motion_weight = torch.cat(motion_weight_list, dim=0)
        motion_weight = torch.exp(-torch.div(motion_weight, 5.0))

        # Velocity scores
        if self.with_velocities:
            assert (
                obsv_velocities is not None
            ), "Please provide velocities if with_velocities=True!"

            velsim_weight_list = []
            obsvvv_velocities = obsv_velocities.unsqueeze(1).expand_as(
                moving_dist
            )
            for v in obsvvv_velocities:
                velsim_weight_list.append(
                    F.pairwise_distance(  # pylint: disable=not-callable
                        v, memory_velocities[:, -3:]
                    ).unsqueeze(0)
                )
            velsim_weight = torch.cat(velsim_weight_list, dim=0)
            cos_sim = torch.exp(-velsim_weight / 5.0)
        else:
            # Moving direction should be aligned
            # Set to 0.5 when two vector not within +-90 degree
            cos_sim_list = []
            obsv_direct = (
                obsv_boxes_3d[:, :2, None]
                - memory_boxes_3d[:, :2, None].transpose(2, 0)
            ).transpose(1, 2)
            for d in obsv_direct:
                cos_sim_list.append(
                    F.cosine_similarity(  # pylint: disable=not-callable
                        d, memory_velocities[:, :2]
                    ).unsqueeze(0)
                )
            cos_sim = torch.cat(cos_sim_list, dim=0)
            cos_sim = torch.add(cos_sim, 1.0)
            cos_sim = torch.div(cos_sim, 2.0)

        scores_depth = (
            cos_sim * centroid_weight + (1.0 - cos_sim) * motion_weight
        )

        return scores_depth

    def __call__(
        self,
        detections: Tensor,
        camera_ids: Tensor,
        detection_scores: Tensor,
        detections_3d: Tensor,
        detection_scores_3d: Tensor,
        detection_class_ids: Tensor,
        detection_embeddings: Tensor,
        obs_velocities: Tensor | None = None,
        memory_boxes_3d: Tensor | None = None,
        memory_track_ids: Tensor | None = None,
        memory_class_ids: Tensor | None = None,
        memory_embeddings: Tensor | None = None,
        memory_boxes_3d_predict: Tensor | None = None,
        memory_velocities: Tensor | None = None,
        with_depth_confidence: bool = True,
    ) -> tuple[Tensor, Tensor]:
        """Process inputs, match detections with existing tracks.

        Args:
            detections (Tensor): [N, 4] detected boxes.
            camera_ids (Tensor): [N,] camera ids.
            detection_scores (Tensor): [N,] confidence scores.
            detections_3d (Tensor): [N, 7] detected boxes in 3D.
            detection_scores_3d (Tensor): [N,] confidence scores in 3D.
            detection_class_ids (Tensor): [N,] class indices.
            detection_embeddings (Tensor): [N, C] appearance embeddings.
            obs_velocities (Tensor | None): [N, 3] velocities of detections.
            memory_boxes_3d (Tensor): [M, 7] boxes in memory.
            memory_track_ids (Tensor): [M,] track ids in memory.
            memory_class_ids (Tensor): [M,] class indices in memory.
            memory_embeddings (Tensor): [M, C] appearance embeddings in
                memory.
            memory_boxes_3d_predict (Tensor): [M, 7] predicted boxes in
                memory.
            memory_velocities (Tensor): [M, 7] velocities in memory.

        Returns:
            tuple[Tensor, Tensor]: track ids of active tracks and selected
                detection indices corresponding to tracks.
        """
        (
            detections,
            detection_scores,
            detections_3d,
            detection_scores_3d,
            detection_class_ids,
            detection_embeddings,
            obs_velocities,
            permute_inds,
        ) = self._filter_detections(
            detections,
            camera_ids,
            detection_scores,
            detections_3d,
            detection_scores_3d,
            detection_class_ids,
            detection_embeddings,
            obs_velocities,
        )

        if with_depth_confidence:
            depth_confidence = detection_scores_3d
        else:
            depth_confidence = detection_scores_3d.new_ones(
                len(detection_scores_3d)
            )

        # match if buffer is not empty
        if len(detections) > 0 and memory_boxes_3d is not None:
            assert (
                memory_track_ids is not None
                and memory_class_ids is not None
                and memory_embeddings is not None
                and memory_boxes_3d_predict is not None
                and memory_velocities is not None
            )

            # Box 3D
            bbox3d_weight_list = []
            for memory_box_3d_predict in memory_boxes_3d_predict:
                bbox3d_weight_list.append(
                    F.pairwise_distance(  # pylint: disable=not-callable
                        detections_3d,
                        memory_box_3d_predict,
                        keepdim=True,
                    )
                )
            bbox3d_weight = torch.cat(bbox3d_weight_list, dim=1)
            scores_iou = torch.exp(-torch.div(bbox3d_weight, 10.0))

            # Depth Ordering
            scores_depth = self.depth_ordering(
                detections_3d,
                obs_velocities,
                memory_boxes_3d_predict,
                memory_boxes_3d,
                memory_velocities,
            )

            # match using bisoftmax metric
            similarity_scores = calc_bisoftmax_affinity(
                detection_embeddings,
                memory_embeddings,
                detection_class_ids,
                memory_class_ids,
            )

            if self.with_cats:
                assert (
                    detection_class_ids is not None
                    and memory_class_ids is not None
                ), "Please provide class ids if with_categories=True!"
                cat_same = detection_class_ids.view(
                    -1, 1
                ) == memory_class_ids.view(1, -1)
                scores_cats = cat_same.float()

            affinity_scores = (
                self.bbox_affinity_weight * scores_iou * scores_depth
                + self.feat_affinity_weight * similarity_scores
            )
            affinity_scores /= (
                self.bbox_affinity_weight + self.feat_affinity_weight
            )
            affinity_scores = torch.mul(
                affinity_scores, torch.greater(scores_iou, 0.0).float()
            )
            affinity_scores = torch.mul(
                affinity_scores, torch.greater(scores_depth, 0.0).float()
            )
            if self.with_cats:
                affinity_scores = torch.mul(affinity_scores, scores_cats)

            ids = greedy_assign(
                detection_scores * depth_confidence,
                memory_track_ids,
                affinity_scores,
                self.match_score_thr,
                self.obj_score_thr,
                self.nms_conf_thr,
            )
        else:
            ids = torch.full(
                (len(detections),),
                -1,
                dtype=torch.long,
                device=detections.device,
            )
        new_inds = (ids == -1) & (detection_scores > self.init_score_thr)
        ids[new_inds] = TrackIDCounter.get_ids(
            new_inds.sum(), device=ids.device  # type: ignore
        )
        return ids, permute_inds


def cam_to_global(
    boxes_3d_list: list[Tensor], extrinsics: Tensor
) -> list[Tensor]:
    """Convert camera coordinates to global coordinates."""
    for i, boxes_3d in enumerate(boxes_3d_list):
        if len(boxes_3d) != 0:
            boxes_3d_list[i][:, :3] = transform_points(
                boxes_3d_list[i][:, :3], extrinsics[i]
            )
            boxes_3d_list[i][:, 6:9] = rotate_orientation(
                boxes_3d_list[i][:, 6:9], extrinsics[i]
            )
            boxes_3d_list[i][:, 9:12] = rotate_velocities(
                boxes_3d_list[i][:, 9:12], extrinsics[i]
            )
    return boxes_3d_list