Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,370 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
"""Quasi-dense embedding similarity based graph."""
from __future__ import annotations
import math
from typing import NamedTuple
import torch
from torch import Tensor, nn
from vis4d.op.box.box2d import bbox_iou
from vis4d.op.box.matchers.max_iou import MaxIoUMatcher
from vis4d.op.box.poolers import MultiScaleRoIAlign, MultiScaleRoIPooler
from vis4d.op.box.samplers import CombinedSampler, match_and_sample_proposals
from vis4d.op.layer.conv2d import add_conv_branch
from vis4d.op.loss import EmbeddingDistanceLoss, MultiPosCrossEntropyLoss
from .assignment import TrackIDCounter, greedy_assign
from .matching import calc_bisoftmax_affinity, cosine_similarity
def get_default_box_sampler() -> CombinedSampler:
"""Get default box sampler of qdtrack."""
box_sampler = CombinedSampler(
batch_size=256,
positive_fraction=0.5,
pos_strategy="instance_balanced",
neg_strategy="iou_balanced",
)
return box_sampler
def get_default_box_matcher() -> MaxIoUMatcher:
"""Get default box matcher of qdtrack."""
box_matcher = MaxIoUMatcher(
thresholds=[0.3, 0.7],
labels=[0, -1, 1],
allow_low_quality_matches=False,
)
return box_matcher
class QDTrackOut(NamedTuple):
"""Output of QDTrack during training."""
key_embeddings: list[Tensor]
ref_embeddings: list[list[Tensor]] | None
key_track_ids: list[Tensor] | None
ref_track_ids: list[list[Tensor]] | None
class QDTrackHead(nn.Module):
"""QDTrack - quasi-dense instance similarity learning."""
def __init__(
self,
similarity_head: QDSimilarityHead | None = None,
box_sampler: CombinedSampler | None = None,
box_matcher: MaxIoUMatcher | None = None,
proposal_append_gt: bool = True,
) -> None:
"""Creates an instance of the class."""
super().__init__()
self.similarity_head = (
QDSimilarityHead() if similarity_head is None else similarity_head
)
self.box_sampler = (
box_sampler
if box_sampler is not None
else get_default_box_sampler()
)
self.box_matcher = (
box_matcher
if box_matcher is not None
else get_default_box_matcher()
)
self.proposal_append_gt = proposal_append_gt
@torch.no_grad()
def _sample_proposals(
self,
det_boxes: list[list[Tensor]],
target_boxes: list[list[Tensor]],
target_track_ids: list[list[Tensor]],
) -> tuple[list[list[Tensor]], list[list[Tensor]]]:
"""Sample proposals for instance similarity learning."""
sampled_boxes, sampled_track_ids = [], []
for i, (boxes, tgt_boxes) in enumerate(zip(det_boxes, target_boxes)):
if self.proposal_append_gt:
boxes = [torch.cat([d, t]) for d, t in zip(boxes, tgt_boxes)]
(
sampled_box_indices,
sampled_target_indices,
sampled_labels,
) = match_and_sample_proposals(
self.box_matcher, self.box_sampler, boxes, tgt_boxes
)
positives = [l == 1 for l in sampled_labels]
if i == 0: # key view: take only positives
sampled_box = [
b[s_i][p]
for b, s_i, p in zip(boxes, sampled_box_indices, positives)
]
sampled_tr_id = [
t[s_i][p]
for t, s_i, p in zip(
target_track_ids[i], sampled_target_indices, positives
)
]
else: # set track_ids to -1 for all negatives
sampled_box = [
b[s_i] for b, s_i in zip(boxes, sampled_box_indices)
]
sampled_tr_id = [
t[s_i]
for t, s_i in zip(
target_track_ids[i], sampled_target_indices
)
]
for pos, samp_tgt in zip(positives, sampled_tr_id):
samp_tgt[~pos] = -1
sampled_boxes.append(sampled_box)
sampled_track_ids.append(sampled_tr_id)
return sampled_boxes, sampled_track_ids
def forward(
self,
features: list[Tensor] | list[list[Tensor]],
det_boxes: list[Tensor] | list[list[Tensor]],
target_boxes: None | list[list[Tensor]] = None,
target_track_ids: None | list[list[Tensor]] = None,
) -> QDTrackOut:
"""Forward function."""
if target_boxes is not None and target_track_ids is not None:
sampled_boxes, sampled_track_ids = self._sample_proposals(
det_boxes, # type: ignore
target_boxes,
target_track_ids,
)
embeddings = []
for feats, boxes in zip(features, sampled_boxes):
assert isinstance(feats, list) and isinstance(boxes, list)
embeddings.append(self.similarity_head(feats, boxes))
return QDTrackOut(
embeddings[0],
embeddings[1:],
sampled_track_ids[0],
sampled_track_ids[1:],
)
key_embeddings = self.similarity_head(features, det_boxes) # type: ignore # pylint: disable=line-too-long
return QDTrackOut(key_embeddings, None, None, None)
def __call__(
self,
features: list[Tensor] | list[list[Tensor]],
det_boxes: list[Tensor] | list[list[Tensor]],
target_boxes: None | list[list[Tensor]] = None,
target_track_ids: None | list[list[Tensor]] = None,
) -> QDTrackOut:
"""Type definition for call implementation."""
return self._call_impl(
features, det_boxes, target_boxes, target_track_ids
)
class QDTrackAssociation:
"""Data association relying on quasi-dense instance similarity.
This class assigns detection candidates to a given memory of existing
tracks and backdrops.
Backdrops are low-score detections kept in case they have high
similarity with a high-score detection in succeeding frames.
Attributes:
init_score_thr: Confidence threshold for initializing a new track
obj_score_thr: Confidence treshold s.t. a detection is considered in
the track / det matching process.
match_score_thr: Similarity score threshold for matching a detection to
an existing track.
memo_backdrop_frames: Number of timesteps to keep backdrops.
memo_momentum: Momentum of embedding memory for smoothing embeddings.
nms_backdrop_iou_thr: Maximum IoU of a backdrop with another detection.
nms_class_iou_thr: Maximum IoU of a high score detection with another
of a different class.
with_cats: If to consider category information for tracking (i.e. all
detections within a track must have consistent category labels).
"""
def __init__(
self,
init_score_thr: float = 0.7,
obj_score_thr: float = 0.3,
match_score_thr: float = 0.5,
nms_conf_thr: float = 0.5,
nms_backdrop_iou_thr: float = 0.3,
nms_class_iou_thr: float = 0.7,
with_cats: bool = True,
) -> None:
"""Creates an instance of the class."""
super().__init__()
self.init_score_thr = init_score_thr
self.obj_score_thr = obj_score_thr
self.match_score_thr = match_score_thr
self.nms_backdrop_iou_thr = nms_backdrop_iou_thr
self.nms_class_iou_thr = nms_class_iou_thr
self.nms_conf_thr = nms_conf_thr
self.with_cats = with_cats
def _filter_detections(
self,
detections: Tensor,
scores: Tensor,
class_ids: Tensor,
embeddings: Tensor,
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
"""Remove overlapping objects across classes via nms.
Args:
detections (Tensor): [N, 4] Tensor of boxes.
scores (Tensor): [N,] Tensor of confidence scores.
class_ids (Tensor): [N,] Tensor of class ids.
embeddings (Tensor): [N, C] tensor of appearance embeddings.
Returns:
tuple[Tensor]: filtered detections, scores, class_ids,
embeddings, and filtered indices.
"""
scores, inds = scores.sort(descending=True)
detections, embeddings, class_ids = (
detections[inds],
embeddings[inds],
class_ids[inds],
)
valids = embeddings.new_ones((len(detections),), dtype=torch.bool)
ious = bbox_iou(detections, detections)
for i in range(1, len(detections)):
if scores[i] < self.obj_score_thr:
thr = self.nms_backdrop_iou_thr
else:
thr = self.nms_class_iou_thr
if (ious[i, :i] > thr).any():
valids[i] = False
detections = detections[valids]
scores = scores[valids]
class_ids = class_ids[valids]
embeddings = embeddings[valids]
return detections, scores, class_ids, embeddings, inds[valids]
def __call__(
self,
detections: Tensor,
detection_scores: Tensor,
detection_class_ids: Tensor,
detection_embeddings: Tensor,
memory_track_ids: Tensor | None = None,
memory_class_ids: Tensor | None = None,
memory_embeddings: Tensor | None = None,
) -> tuple[Tensor, Tensor]:
"""Process inputs, match detections with existing tracks.
Args:
detections (Tensor): [N, 4] detected boxes.
detection_scores (Tensor): [N,] confidence scores.
detection_class_ids (Tensor): [N,] class indices.
detection_embeddings (Tensor): [N, C] appearance embeddings.
memory_track_ids (Tensor): [M,] track ids in memory.
memory_class_ids (Tensor): [M,] class indices in memory.
memory_embeddings (Tensor): [M, C] appearance embeddings in
memory.
Returns:
tuple[Tensor, Tensor]: track ids of active tracks and selected
detection indices corresponding to tracks.
"""
(
detections,
detection_scores,
detection_class_ids,
detection_embeddings,
permute_inds,
) = self._filter_detections(
detections,
detection_scores,
detection_class_ids,
detection_embeddings,
)
# match if buffer is not empty
if len(detections) > 0 and memory_track_ids is not None:
assert (
memory_class_ids is not None and memory_embeddings is not None
)
affinity_scores = calc_bisoftmax_affinity(
detection_embeddings,
memory_embeddings,
detection_class_ids,
memory_class_ids,
self.with_cats,
)
ids = greedy_assign(
detection_scores,
memory_track_ids,
affinity_scores,
self.match_score_thr,
self.obj_score_thr,
self.nms_conf_thr,
)
else:
ids = torch.full(
(len(detections),),
-1,
dtype=torch.long,
device=detections.device,
)
new_inds = (ids == -1) & (detection_scores > self.init_score_thr)
ids[new_inds] = TrackIDCounter.get_ids(
new_inds.sum(), device=ids.device # type: ignore
)
return ids, permute_inds
class QDSimilarityHead(nn.Module):
"""Instance embedding head for quasi-dense similarity learning.
Given a set of input feature maps and RoIs, pool RoI representations from
feature maps and process them to a per-RoI embeddings vector.
"""
def __init__(
self,
proposal_pooler: None | MultiScaleRoIPooler = None,
in_dim: int = 256,
num_convs: int = 4,
conv_out_dim: int = 256,
conv_has_bias: bool = False,
num_fcs: int = 1,
fc_out_dim: int = 1024,
embedding_dim: int = 256,
norm: str = "GroupNorm",
num_groups: int = 32,
start_level: int = 2,
) -> None:
"""Creates an instance of the class.
Args:
proposal_pooler (None | MultiScaleRoIPooler, optional): RoI pooling
module. Defaults to None.
in_dim (int, optional): Input feature dimension. Defaults to 256.
num_convs (int, optional): Number of convolutional layers inside
the head. Defaults to 4.
conv_out_dim (int, optional): Output dimension of the last conv
layer. Defaults to 256.
conv_has_bias (bool, optional): If the conv layers have a bias
parameter. Defaults to False.
num_fcs (int, optional): Number of fully connected layers following
the conv layers. Defaults to 1.
fc_out_dim (int, optional): Output dimension of the last fully
connected layer. Defaults to 1024.
embedding_dim (int, optional): Dimensionality of the output
instance embedding. Defaults to 256.
norm (str, optional): Normalization of the layers inside the head.
One of BatchNorm2d, GroupNorm. Defaults to "GroupNorm".
num_groups (int, optional): Number of groups for the GroupNorm
normalization. Defaults to 32.
start_level (int, optional): starting level of feature maps.
Defaults to 2.
"""
super().__init__()
self.in_dim = in_dim
self.num_convs = num_convs
self.conv_out_dim = conv_out_dim
self.conv_has_bias = conv_has_bias
self.num_fcs = num_fcs
self.fc_out_dim = fc_out_dim
self.norm = norm
self.num_groups = num_groups
if proposal_pooler is not None:
self.roi_pooler = proposal_pooler
else:
self.roi_pooler = MultiScaleRoIAlign(
resolution=[7, 7], strides=[4, 8, 16, 32], sampling_ratio=0
)
# Used feature layers are [start_level, end_level)
self.start_level = start_level
num_strides = len(self.roi_pooler.scales)
self.end_level = start_level + num_strides
self.convs, self.fcs, last_layer_dim = self._init_embedding_head()
self.fc_embed = nn.Linear(last_layer_dim, embedding_dim)
self._init_weights()
def _init_weights(self) -> None:
"""Init weights of modules in head."""
for m in self.convs:
nn.init.kaiming_uniform_(m.weight, a=1) # type: ignore
if m.bias is not None:
nn.init.constant_(m.bias, 0) # type: ignore
for m in self.fcs:
if isinstance(m[0], nn.Linear): # type: ignore
nn.init.xavier_uniform_(m[0].weight) # type: ignore
nn.init.constant_(m[0].bias, 0) # type: ignore
nn.init.normal_(self.fc_embed.weight, 0, 0.01)
nn.init.constant_(self.fc_embed.bias, 0)
def _init_embedding_head(
self,
) -> tuple[torch.nn.ModuleList, torch.nn.ModuleList, int]:
"""Init modules of head."""
convs, last_layer_dim = add_conv_branch(
self.num_convs,
self.in_dim,
self.conv_out_dim,
self.conv_has_bias,
self.norm,
self.num_groups,
)
fcs = nn.ModuleList()
if self.num_fcs > 0:
last_layer_dim *= math.prod(self.roi_pooler.resolution)
for i in range(self.num_fcs):
fc_in_dim = last_layer_dim if i == 0 else self.fc_out_dim
fcs.append(
nn.Sequential(
nn.Linear(fc_in_dim, self.fc_out_dim),
nn.ReLU(inplace=True),
)
)
last_layer_dim = self.fc_out_dim
return convs, fcs, last_layer_dim
def forward(
self, features: list[Tensor], boxes: list[Tensor]
) -> list[Tensor]:
"""Similarity head forward pass.
Args:
features (list[Tensor]): A feature pyramid. The list index
represents the level, which has a downsampling raio of 2^index.
fp[0] is a feature map with the image resolution instead of the
original image.
boxes (list[Tensor]): A list of [N, 4] 2D bounding boxes per
batch element.
Returns:
list[Tensor]: An embedding vector per input box, .
"""
# RoI pooling
x = self.roi_pooler(features[self.start_level : self.end_level], boxes)
# convs
if self.num_convs > 0:
for conv in self.convs:
x = conv(x)
# fcs
x = torch.flatten(x, start_dim=1)
if self.num_fcs > 0:
for fc in self.fcs:
x = fc(x)
embeddings: list[Tensor] = list(
self.fc_embed(x).split([len(b) for b in boxes])
)
return embeddings
def __call__(
self, features: list[Tensor], boxes: list[Tensor]
) -> list[Tensor]:
"""Type definition."""
return self._call_impl(features, boxes)
class QDTrackInstanceSimilarityLosses(NamedTuple):
"""QDTrack losses return type. Consists of two scalar loss tensors."""
track_loss: Tensor
track_loss_aux: Tensor
class QDTrackInstanceSimilarityLoss(nn.Module):
"""Instance similarity loss as in QDTrack.
Given a number of key frame embeddings and a number of reference frame
embeddings along with their track identities, compute two losses:
1. Multi-positive cross-entropy loss.
2. Cosine similarity loss (auxiliary).
"""
def __init__(self, softmax_temp: float = -1):
"""Creates an instance of the class.
Args:
softmax_temp (float, optional): Temperature parameter for
multi-positive cross-entropy loss. Defaults to -1.
"""
super().__init__()
self.softmax_temp = softmax_temp
self.track_loss = MultiPosCrossEntropyLoss()
self.track_loss_aux = EmbeddingDistanceLoss()
self.track_loss_weight = 0.25
def forward(
self,
key_embeddings: list[Tensor],
ref_embeddings: list[list[Tensor]],
key_track_ids: list[Tensor],
ref_track_ids: list[list[Tensor]],
) -> QDTrackInstanceSimilarityLosses:
"""The QDTrack instance similarity loss.
Key inputs are of type list[Tensor/Boxes2D] (Lists are length N)
Ref inputs are of type list[list[Tensor/Boxes2D]] where the lists
are of length MxN.
Where M is the number of reference views and N is the
number of batch elements.
NOTE: this only works if key only contains positives and all
negatives in ref have track_id -1
Args:
key_embeddings (list[Tensor]): key frame embeddings.
ref_embeddings (list[list[Tensor]]): reference frame
embeddings.
key_track_ids (list[Tensor]): associated track ids per
embedding in key frame.
ref_track_ids (list[list[Tensor]]): associated track ids per
embedding in reference frame(s).
Returns:
QDTrackInstanceSimilarityLosses: Scalar loss tensors.
"""
if sum(len(e) for e in key_embeddings) == 0: # pragma: no cover
dummy_loss = sum(e.sum() * 0.0 for e in key_embeddings)
return QDTrackInstanceSimilarityLosses(dummy_loss, dummy_loss) # type: ignore # pylint: disable=line-too-long
loss_track = torch.tensor(0.0, device=key_embeddings[0].device)
loss_track_aux = torch.tensor(0.0, device=key_embeddings[0].device)
dists, cos_dists = self._match(key_embeddings, ref_embeddings)
track_targets, track_weights = self._get_targets(
key_track_ids, ref_track_ids
)
# for each reference view
for curr_dists, curr_cos_dists, curr_targets, curr_weights in zip(
dists, cos_dists, track_targets, track_weights
):
# for each batch element
for _dists, _cos_dists, _targets, _weights in zip(
curr_dists, curr_cos_dists, curr_targets, curr_weights
):
if all(_dists.shape):
loss_track += (
self.track_loss(
_dists,
_targets,
_weights,
avg_factor=_weights.sum() + 1e-5,
)
* self.track_loss_weight
)
if self.track_loss_aux is not None:
loss_track_aux += self.track_loss_aux(
_cos_dists, _targets
)
num_pairs = len(dists) * len(dists[0])
loss_track = torch.div(loss_track, num_pairs)
loss_track_aux = torch.div(loss_track_aux, num_pairs)
return QDTrackInstanceSimilarityLosses(
track_loss=loss_track, track_loss_aux=loss_track_aux
)
def __call__(
self,
key_embeddings: list[Tensor],
ref_embeddings: list[list[Tensor]],
key_track_ids: list[Tensor],
ref_track_ids: list[list[Tensor]],
) -> QDTrackInstanceSimilarityLosses:
"""Type definition."""
return self._call_impl(
key_embeddings, ref_embeddings, key_track_ids, ref_track_ids
)
@staticmethod
def _get_targets(
key_track_ids: list[Tensor],
ref_track_ids: list[list[Tensor]],
) -> tuple[list[list[Tensor]], list[list[Tensor]]]:
"""Create tracking target tensors.
Args:
key_track_ids (list[Tensor]): A List of Tensors [N,] per
batch element containing the corresponding track ids of each
box in the key frame.
ref_track_ids (list[list[Tensor]]): A nested list fo Tensors
[N,] per batch element, per reference view. The inner list
denotes the batch index, the outer list the reference view
index. Contains track ids of boxes in all reference views
across the batch.
Returns:
tuple[list[list[Tensor]], list[list[Tensor]]]: The
target tensors per key-reference pair containing 1 if the
identities of two boxes across the key and a reference view
match, and 0 otherwise and the loss reduction weights for
a certain box.
"""
# for each reference view
track_targets, track_weights = [], []
for ref_target in ref_track_ids:
# for each batch element
curr_targets, curr_weights = [], []
for key_target, ref_target_ in zip(key_track_ids, ref_target):
# target shape: len(key_target) x len(ref_target_)
# NOTE: this only works if key only contains positives and all
# negatives in ref have track_id -1
target = (
key_target.view(-1, 1) == ref_target_.view(1, -1)
).int()
weight = (target.sum(dim=1) > 0).float()
curr_targets.append(target)
curr_weights.append(weight)
track_targets.append(curr_targets)
track_weights.append(curr_weights)
return track_targets, track_weights
def _match(
self,
key_embeds: list[Tensor],
ref_embeds: list[list[Tensor]],
) -> tuple[list[list[Tensor]], list[list[Tensor]]]:
"""Calculate distances for all pairs of key / ref embeddings.
Args:
key_embeds (list[Tensor]): Embeddings for boxes in key frame.
ref_embeds (list[list[Tensor]]): Embeddings for boxes in
all reference frames.
Returns:
tuple[list[list[Tensor]], list[list[Tensor]]]:
Embedding distances for all embedding pairs, first normalized
via softmax, then normal cosine similary.
"""
# for each reference view
dists, cos_dists = [], []
for ref_embed in ref_embeds:
# for each batch element
dists_curr, cos_dists_curr = [], []
for key_embed, ref_embed_ in zip(key_embeds, ref_embed):
dist = cosine_similarity(
key_embed,
ref_embed_,
normalize=False,
temperature=self.softmax_temp,
)
dists_curr.append(dist)
if self.track_loss_aux is not None:
cos_dist = cosine_similarity(key_embed, ref_embed_)
cos_dists_curr.append(cos_dist)
dists.append(dists_curr)
cos_dists.append(cos_dists_curr)
return dists, cos_dists
|