File size: 18,468 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
"""Resize transformation."""

from __future__ import annotations

import random
from typing import TypedDict

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor

from vis4d.common.imports import OPENCV_AVAILABLE
from vis4d.common.typing import NDArrayF32
from vis4d.data.const import CommonKeys as K
from vis4d.op.box.box2d import transform_bbox

from .base import Transform

if OPENCV_AVAILABLE:
    import cv2
    from cv2 import (  # pylint: disable=no-member,no-name-in-module
        INTER_AREA,
        INTER_CUBIC,
        INTER_LANCZOS4,
        INTER_LINEAR,
        INTER_NEAREST,
    )
else:
    raise ImportError("Please install opencv-python to use this module.")


class ResizeParam(TypedDict):
    """Parameters for Resize."""

    target_shape: tuple[int, int]
    scale_factor: tuple[float, float]


@Transform(K.images, ["transforms.resize", K.input_hw])
class GenResizeParameters:
    """Generate the parameters for a resize operation."""

    def __init__(
        self,
        shape: tuple[int, int] | list[tuple[int, int]],
        keep_ratio: bool = False,
        multiscale_mode: str = "range",
        scale_range: tuple[float, float] = (1.0, 1.0),
        align_long_edge: bool = False,
        resize_short_edge: bool = False,
        allow_overflow: bool = False,
        fixed_scale: bool = False,
    ) -> None:
        """Creates an instance of the class.

        Args:
            shape (tuple[int, int] | list[tuple[int, int]]): Image shape to
                be resized to in (H, W) format. In multiscale mode 'list',
                shape represents the list of possible shapes for resizing.
            keep_ratio (bool, optional): If aspect ratio of the original image
                should be kept, the new shape will modified to fit the aspect
                ratio of the original image. Defaults to False.
            multiscale_mode (str, optional): one of [range, list]. Defaults to
                "range".
            scale_range (tuple[float, float], optional): Range of sampled image
                scales in range mode, e.g. (0.8, 1.2), indicating minimum of
                0.8 * shape and maximum of 1.2 * shape. Defaults to (1.0, 1.0).
            align_long_edge (bool, optional): If keep_ratio=true, this option
                indicates if shape should be automatically aligned with the
                long edge of the original image, e.g. original shape=(100, 80),
                shape to be resized=(100, 200) will yield (125, 100) as new
                shape. Defaults to False.
            resize_short_edge (bool, optional): If keep_ratio=true, this option
                scale the image according to the short edge. e.g. original
                shape=(80, 100), shape to be resized=(100, 200) will yield
                (100, 125) as new shape. Defaults to False.
            allow_overflow (bool, optional): If set to True, we scale the image
                to the smallest size such that it is no smaller than shape.
                Otherwise, we scale the image to the largest size such that it
                is no larger than shape. Defaults to False.
            fixed_scale (bool, optional): If set to True, we scale the image
                without offset. Defaults to False.
        """
        self.shape = shape
        self.keep_ratio = keep_ratio

        assert multiscale_mode in {"list", "range"}
        self.multiscale_mode = multiscale_mode

        assert (
            scale_range[0] <= scale_range[1]
        ), f"Invalid scale range: {scale_range[1]} < {scale_range[0]}"
        self.scale_range = scale_range

        self.align_long_edge = align_long_edge
        self.resize_short_edge = resize_short_edge
        self.allow_overflow = allow_overflow
        self.fixed_scale = fixed_scale

    def _get_target_shape(
        self, input_shape: tuple[int, int]
    ) -> tuple[int, int]:
        """Generate possibly random target shape."""
        if self.multiscale_mode == "range":
            assert isinstance(
                self.shape, tuple
            ), "Specify shape as tuple when using multiscale mode range."
            if self.scale_range[0] < self.scale_range[1]:  # do multi-scale
                w_scale = (
                    random.uniform(0, 1)
                    * (self.scale_range[1] - self.scale_range[0])
                    + self.scale_range[0]
                )
                h_scale = (
                    random.uniform(0, 1)
                    * (self.scale_range[1] - self.scale_range[0])
                    + self.scale_range[0]
                )
            else:
                h_scale = w_scale = 1.0

            shape = int(self.shape[0] * h_scale), int(self.shape[1] * w_scale)
        else:
            assert isinstance(
                self.shape, list
            ), "Specify shape as list when using multiscale mode list."
            shape = random.choice(self.shape)

        return get_resize_shape(
            input_shape,
            shape,
            self.keep_ratio,
            self.align_long_edge,
            self.resize_short_edge,
            self.allow_overflow,
            self.fixed_scale,
        )

    def __call__(
        self, images: list[NDArrayF32]
    ) -> tuple[list[ResizeParam], list[tuple[int, int]]]:
        """Compute the parameters and put them in the data dict."""
        image = images[0]

        im_shape = (image.shape[1], image.shape[2])
        target_shape = self._get_target_shape(im_shape)
        scale_factor = (
            target_shape[1] / im_shape[1],
            target_shape[0] / im_shape[0],
        )

        resize_params = [
            ResizeParam(target_shape=target_shape, scale_factor=scale_factor)
        ] * len(images)
        target_shapes = [target_shape] * len(images)

        return resize_params, target_shapes


def get_resize_shape(
    original_shape: tuple[int, int],
    new_shape: tuple[int, int],
    keep_ratio: bool = True,
    align_long_edge: bool = False,
    resize_short_edge: bool = False,
    allow_overflow: bool = False,
    fixed_scale: bool = False,
) -> tuple[int, int]:
    """Get shape for resize, considering keep_ratio and align_long_edge.

    Args:
        original_shape (tuple[int, int]): Original shape in [H, W].
        new_shape (tuple[int, int]): New shape in [H, W].
        keep_ratio (bool, optional): Whether to keep the aspect ratio.
            Defaults to True.
        align_long_edge (bool, optional): Whether to align the long edge of
            the original shape with the long edge of the new shape.
            Defaults to False.
        resize_short_edge (bool, optional): Whether to resize according to the
            short edge. Defaults to False.
        allow_overflow (bool, optional): Whether to allow overflow.
            Defaults to False.
        fixed_scale (bool, optional): Whether to use fixed scale.

    Returns:
        tuple[int, int]: The new shape in [H, W].
    """
    h, w = original_shape
    new_h, new_w = new_shape

    if keep_ratio:
        if allow_overflow:
            comp_fn = max
        else:
            comp_fn = min

        if align_long_edge:
            long_edge, short_edge = max(new_shape), min(new_shape)
            scale_factor = comp_fn(
                long_edge / max(h, w), short_edge / min(h, w)
            )
        elif resize_short_edge:
            short_edge = min(original_shape)
            new_short_edge = min(new_shape)
            scale_factor = new_short_edge / short_edge
        else:
            scale_factor = comp_fn(new_w / w, new_h / h)

        if fixed_scale:
            offset = 0.0
        else:
            offset = 0.5

        new_h = int(h * scale_factor + offset)
        new_w = int(w * scale_factor + offset)

    return new_h, new_w


@Transform([K.images, "transforms.resize.target_shape"], K.images)
class ResizeImages:
    """Resize Images."""

    def __init__(
        self,
        interpolation: str = "bilinear",
        antialias: bool = False,
        imresize_backend: str = "torch",
    ) -> None:
        """Creates an instance of the class.

        Args:
            interpolation (str, optional): Interpolation method. One of
                ["nearest", "bilinear", "bicubic"]. Defaults to "bilinear".
            antialias (bool): Whether to use antialiasing. Defaults to False.
            imresize_backend (str): One of torch, cv2. Defaults to torch.
        """
        self.interpolation = interpolation
        self.antialias = antialias
        self.imresize_backend = imresize_backend
        assert imresize_backend in {
            "torch",
            "cv2",
        }, f"Invalid imresize backend: {imresize_backend}"

    def __call__(
        self, images: list[NDArrayF32], target_shapes: list[tuple[int, int]]
    ) -> list[NDArrayF32]:
        """Resize an image of dimensions [N, H, W, C].

        Args:
            image (Tensor): The image.
            target_shape (tuple[int, int]): The target shape after resizing.

        Returns:
            list[NDArrayF32]: Resized images according to parameters in resize.
        """
        for i, (image, target_shape) in enumerate(zip(images, target_shapes)):
            images[i] = resize_image(
                image,
                target_shape,
                interpolation=self.interpolation,
                antialias=self.antialias,
                backend=self.imresize_backend,
            )
        return images


def resize_image(
    inputs: NDArrayF32,
    shape: tuple[int, int],
    interpolation: str = "bilinear",
    antialias: bool = False,
    backend: str = "torch",
) -> NDArrayF32:
    """Resize image."""
    if backend == "torch":
        image = torch.from_numpy(inputs).permute(0, 3, 1, 2)
        image = resize_tensor(image, shape, interpolation, antialias)
        return image.permute(0, 2, 3, 1).numpy()

    if backend == "cv2":
        cv2_interp_codes = {
            "nearest": INTER_NEAREST,
            "bilinear": INTER_LINEAR,
            "bicubic": INTER_CUBIC,
            "area": INTER_AREA,
            "lanczos": INTER_LANCZOS4,
        }
        return cv2.resize(  # pylint: disable=no-member, unsubscriptable-object
            inputs[0].astype(np.uint8),
            (shape[1], shape[0]),
            interpolation=cv2_interp_codes[interpolation],
        )[None, ...].astype(np.float32)

    raise ValueError(f"Invalid imresize backend: {backend}")


@Transform([K.boxes2d, "transforms.resize.scale_factor"], K.boxes2d)
class ResizeBoxes2D:
    """Resize list of 2D bounding boxes."""

    def __call__(
        self,
        boxes_list: list[NDArrayF32],
        scale_factors: list[tuple[float, float]],
    ) -> list[NDArrayF32]:
        """Resize 2D bounding boxes.

        Args:
            boxes_list: (list[NDArrayF32]): The bounding boxes to be resized.
            scale_factors (list[tuple[float, float]]): scaling factors.

        Returns:
            list[NDArrayF32]: Resized bounding boxes according to parameters in
                resize.
        """
        for i, (boxes, scale_factor) in enumerate(
            zip(boxes_list, scale_factors)
        ):
            boxes_ = torch.from_numpy(boxes)
            scale_matrix = torch.eye(3)
            scale_matrix[0, 0] = scale_factor[0]
            scale_matrix[1, 1] = scale_factor[1]
            boxes_list[i] = transform_bbox(scale_matrix, boxes_).numpy()
        return boxes_list


@Transform(
    [
        K.depth_maps,
        "transforms.resize.target_shape",
        "transforms.resize.scale_factor",
    ],
    K.depth_maps,
)
class ResizeDepthMaps:
    """Resize depth maps."""

    def __init__(
        self,
        interpolation: str = "nearest",
        rescale_depth_values: bool = False,
        check_scale_factors: bool = False,
    ):
        """Initialize the transform.

        Args:
            interpolation (str, optional): Interpolation method. One of
                ["nearest", "bilinear", "bicubic"]. Defaults to "nearest".
            rescale_depth_values (bool, optional): If the depth values should
                be rescaled according to the new scale factor. Defaults to
                False. This is useful if we want to keep the intrinsic
                parameters of the camera the same.
            check_scale_factors (bool, optional): If the scale factors should
                be checked to ensure they are the same. Defaults to False.
                If False, the scale factor is assumed to be the same for both
                dimensions and will just use the first scale factor.
        """
        self.interpolation = interpolation
        self.rescale_depth_values = rescale_depth_values
        self.check_scale_factors = check_scale_factors

    def __call__(
        self,
        depth_maps: list[NDArrayF32],
        target_shapes: list[tuple[int, int]],
        scale_factors: list[tuple[float, float]],
    ) -> list[NDArrayF32]:
        """Resize depth maps."""
        for i, (depth_map, target_shape, scale_factor) in enumerate(
            zip(depth_maps, target_shapes, scale_factors)
        ):
            depth_map_ = torch.from_numpy(depth_map)
            depth_map_ = (
                resize_tensor(
                    depth_map_.float().unsqueeze(0).unsqueeze(0),
                    target_shape,
                    interpolation=self.interpolation,
                )
                .type(depth_map_.dtype)
                .squeeze(0)
                .squeeze(0)
            )
            if self.rescale_depth_values:
                if self.check_scale_factors:
                    assert np.isclose(
                        scale_factor[0], scale_factor[1], atol=1e-4
                    ), "Depth map scale factors must be the same"
                depth_map_ /= scale_factor[0]
            depth_maps[i] = depth_map_.numpy()
        return depth_maps


@Transform(
    [
        K.optical_flows,
        "transforms.resize.target_shape",
        "transforms.resize.scale_factor",
    ],
    K.optical_flows,
)
class ResizeOpticalFlows:
    """Resize optical flows."""

    def __init__(self, normalized_flow: bool = True):
        """Create a ResizeOpticalFlows instance.

        Args:
            normalized_flow (bool): Whether the optical flow is normalized.
                Defaults to True. If false, the optical flow will be scaled
                according to the scale factor.
        """
        self.normalized_flow = normalized_flow

    def __call__(
        self,
        optical_flows: list[NDArrayF32],
        target_shapes: list[tuple[int, int]],
        scale_factors: list[tuple[float, float]],
    ) -> list[NDArrayF32]:
        """Resize optical flows."""
        for i, (optical_flow, target_shape, scale_factor) in enumerate(
            zip(optical_flows, target_shapes, scale_factors)
        ):
            optical_flow_ = torch.from_numpy(optical_flow).permute(2, 0, 1)
            optical_flow_ = (
                resize_tensor(
                    optical_flow_.float().unsqueeze(0),
                    target_shape,
                    interpolation="bilinear",
                )
                .type(optical_flow_.dtype)
                .squeeze(0)
                .permute(1, 2, 0)
            )
            # scale optical flows
            if not self.normalized_flow:
                optical_flow_[:, :, 0] *= scale_factor[0]
                optical_flow_[:, :, 1] *= scale_factor[1]
            optical_flows[i] = optical_flow_.numpy()
        return optical_flows


@Transform(
    [K.instance_masks, "transforms.resize.target_shape"], K.instance_masks
)
class ResizeInstanceMasks:
    """Resize instance segmentation masks."""

    def __call__(
        self,
        masks_list: list[NDArrayF32],
        target_shapes: list[tuple[int, int]],
    ) -> list[NDArrayF32]:
        """Resize masks."""
        for i, (masks, target_shape) in enumerate(
            zip(masks_list, target_shapes)
        ):
            if len(masks) == 0:  # handle empty masks
                continue
            masks_ = torch.from_numpy(masks)
            masks_ = (
                resize_tensor(
                    masks_.float().unsqueeze(1),
                    target_shape,
                    interpolation="nearest",
                )
                .type(masks_.dtype)
                .squeeze(1)
            )
            masks_list[i] = masks_.numpy()
        return masks_list


@Transform([K.seg_masks, "transforms.resize.target_shape"], K.seg_masks)
class ResizeSegMasks:
    """Resize segmentation masks."""

    def __call__(
        self,
        masks_list: list[NDArrayF32],
        target_shape_list: list[tuple[int, int]],
    ) -> list[NDArrayF32]:
        """Resize masks."""
        for i, (masks, target_shape) in enumerate(
            zip(masks_list, target_shape_list)
        ):
            masks_ = torch.from_numpy(masks)
            masks_ = (
                resize_tensor(
                    masks_.float().unsqueeze(0).unsqueeze(0),
                    target_shape,
                    interpolation="nearest",
                )
                .type(masks_.dtype)
                .squeeze(0)
                .squeeze(0)
            )
            masks_list[i] = masks_.numpy()
        return masks_list


@Transform([K.intrinsics, "transforms.resize.scale_factor"], K.intrinsics)
class ResizeIntrinsics:
    """Resize Intrinsics."""

    def __call__(
        self,
        intrinsics: list[NDArrayF32],
        scale_factors: list[tuple[float, float]],
    ) -> list[NDArrayF32]:
        """Scale camera intrinsics when resizing."""
        for i, scale_factor in enumerate(scale_factors):
            scale_matrix = np.eye(3, dtype=np.float32)
            scale_matrix[0, 0] *= scale_factor[0]
            scale_matrix[1, 1] *= scale_factor[1]
            intrinsics[i] = scale_matrix @ intrinsics[i]
        return intrinsics


def resize_tensor(
    inputs: Tensor,
    shape: tuple[int, int],
    interpolation: str = "bilinear",
    antialias: bool = False,
) -> Tensor:
    """Resize Tensor."""
    assert interpolation in {"nearest", "bilinear", "bicubic"}
    align_corners = None if interpolation == "nearest" else False
    output = F.interpolate(
        inputs,
        shape,
        mode=interpolation,
        align_corners=align_corners,
        antialias=antialias,
    )
    return output