File size: 9,100 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Dataloader utility functions."""

from __future__ import annotations

import random
import warnings
from collections.abc import Callable, Sequence

import numpy as np
import torch
from torch.utils.data import (
    DataLoader,
    Dataset,
    RandomSampler,
    SequentialSampler,
)
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import Sampler

from vis4d.common.distributed import get_rank, get_world_size

from .const import CommonKeys as K
from .data_pipe import DataPipe
from .datasets.base import VideoDataset
from .samplers import AspectRatioBatchSampler, VideoInferenceSampler
from .transforms import compose
from .transforms.to_tensor import ToTensor
from .typing import DictData, DictDataOrList

DEFAULT_COLLATE_KEYS = (
    K.seg_masks,
    K.extrinsics,
    K.intrinsics,
    K.depth_maps,
    K.optical_flows,
    K.categories,
)


def default_collate(
    batch: list[DictData],
    collate_keys: Sequence[str] = DEFAULT_COLLATE_KEYS,
    sensors: Sequence[str] | None = None,
) -> DictData:
    """Default batch collate.

    It will concatenate images and stack seg_masks, extrinsics, intrinsics,
    and depth_maps. Other keys will be put into a list.

    Args:
        batch (list[DictData]): List of data dicts.
        collate_keys (Sequence[str]): Keys to be collated. Default is
            DEFAULT_COLLATE_KEYS.
        sensors (Sequence[str] | None): List of sensors to collate. If is not
            None will raise an error. Default is None.

    Returns:
        DictData: Collated data dict.
    """
    assert sensors is None, "If specified sensors, use multi_sensor_collate."

    data: DictData = {}
    for key in batch[0]:
        try:
            if key == "transforms":  # skip transform parameters
                continue
            if key in [K.images]:
                data[key] = torch.cat([b[key] for b in batch])
            elif key in collate_keys:
                data[key] = torch.stack([b[key] for b in batch], 0)
            else:
                data[key] = [b[key] for b in batch]
        except RuntimeError as e:
            raise RuntimeError(f"Error collating key {key}") from e
    return data


def multi_sensor_collate(
    batch: list[DictData],
    collate_keys: Sequence[str] = DEFAULT_COLLATE_KEYS,
    sensors: Sequence[str] | None = None,
) -> DictData:
    """Default multi-sensor batch collate.

    Args:
        batch (list[DictData]): List of data dicts. Each data dict contains
            data from multiple sensors.
        collate_keys (Sequence[str]): Keys to be collated. Default is
            DEFAULT_COLLATE_KEYS.
        sensors (Sequence[str] | None): List of sensors to collate. If None,
            will raise an error. Default is None.

    Returns:
        DictData: Collated data dict.
    """
    assert (
        sensors is not None
    ), "If not specified sensors, use default_collate."

    collated_batch: DictData = {}

    # For each sensor, collate the batch. Other keys will be put into a list.
    for key in batch[0]:
        inner_batch = [b[key] for b in batch]
        if key in sensors:
            collated_batch[key] = default_collate(inner_batch, collate_keys)
        else:
            collated_batch[key] = inner_batch
    return collated_batch


def default_pipeline(data: list[DictData]) -> list[DictData]:
    """Default data pipeline."""
    return compose([ToTensor()])(data)


def build_train_dataloader(
    dataset: DataPipe,
    samples_per_gpu: int = 1,
    workers_per_gpu: int = 1,
    batchprocess_fn: Callable[
        [list[DictData]], list[DictData]
    ] = default_pipeline,
    collate_fn: Callable[
        [list[DictData], Sequence[str]], DictData
    ] = default_collate,
    collate_keys: Sequence[str] = DEFAULT_COLLATE_KEYS,
    sensors: Sequence[str] | None = None,
    pin_memory: bool = True,
    shuffle: bool | None = True,
    drop_last: bool = False,
    seed: int | None = None,
    aspect_ratio_grouping: bool = False,
    sampler: Sampler | None = None,  # type: ignore
    disable_subprocess_warning: bool = False,
) -> DataLoader[DictDataOrList]:
    """Build training dataloader."""
    assert isinstance(dataset, DataPipe), "dataset must be a DataPipe"

    def _collate_fn_single(data: list[DictData]) -> DictData:
        """Collates data from single view dataset."""
        return collate_fn(  # type: ignore
            batch=batchprocess_fn(data),
            collate_keys=collate_keys,
            sensors=sensors,
        )

    def _collate_fn_multi(data: list[list[DictData]]) -> list[DictData]:
        """Collates data from multi view dataset."""
        views = []
        for view_idx in range(len(data[0])):
            view = collate_fn(  # type: ignore
                batch=batchprocess_fn([d[view_idx] for d in data]),
                collate_keys=collate_keys,
                sensors=sensors,
            )
            views.append(view)
        return views

    def _worker_init_fn(worker_id: int) -> None:
        """Will be called on each worker after seeding and before data loading.

        Args:
            worker_id (int): Worker id in [0, num_workers - 1].
        """
        if seed is not None:
            # The seed of each worker equals to
            # num_workers * rank + worker_id + user_seed
            worker_seed = workers_per_gpu * get_rank() + worker_id + seed
            np.random.seed(worker_seed)
            random.seed(worker_seed)
            torch.manual_seed(worker_seed)
            if disable_subprocess_warning and worker_id != 0:
                warnings.simplefilter("ignore")

    if sampler is None:
        if get_world_size() > 1:
            assert isinstance(
                shuffle, bool
            ), "When using distributed training, shuffle must be a boolean."
            sampler = DistributedSampler(
                dataset, shuffle=shuffle, drop_last=drop_last
            )
            shuffle = False
            drop_last = False
        elif shuffle:
            sampler = RandomSampler(dataset)
            shuffle = False
        else:
            sampler = SequentialSampler(dataset)

    batch_sampler = None
    if aspect_ratio_grouping:
        batch_sampler = AspectRatioBatchSampler(
            sampler, batch_size=samples_per_gpu, drop_last=drop_last
        )
        samples_per_gpu = 1
        shuffle = None
        drop_last = False
        sampler = None

    dataloader = DataLoader(
        dataset,
        batch_size=samples_per_gpu,
        num_workers=workers_per_gpu,
        collate_fn=(
            _collate_fn_multi if dataset.has_reference else _collate_fn_single
        ),
        sampler=sampler,
        batch_sampler=batch_sampler,
        worker_init_fn=_worker_init_fn,
        persistent_workers=workers_per_gpu > 0,
        pin_memory=pin_memory,
        shuffle=shuffle,
        drop_last=drop_last,
    )
    return dataloader


def build_inference_dataloaders(
    datasets: Dataset[DictDataOrList] | list[Dataset[DictDataOrList]],
    samples_per_gpu: int = 1,
    workers_per_gpu: int = 1,
    video_based_inference: bool = False,
    batchprocess_fn: Callable[
        [list[DictData]], list[DictData]
    ] = default_pipeline,
    collate_fn: Callable[
        [list[DictData], Sequence[str]], DictData
    ] = default_collate,
    collate_keys: Sequence[str] = DEFAULT_COLLATE_KEYS,
    sensors: Sequence[str] | None = None,
) -> list[DataLoader[DictDataOrList]]:
    """Build dataloaders for test / predict."""

    def _collate_fn(data: list[DictData]) -> DictData:
        """Collates data for inference."""
        return collate_fn(  # type: ignore
            batch=batchprocess_fn(data),
            collate_keys=collate_keys,
            sensors=sensors,
        )

    if isinstance(datasets, Dataset):
        datasets_ = [datasets]
    else:
        datasets_ = datasets

    dataloaders = []
    for dataset in datasets_:
        sampler: DistributedSampler[list[int]] | None
        if get_world_size() > 1:
            if video_based_inference:
                if isinstance(dataset, DataPipe):
                    assert (
                        len(dataset.datasets) == 1
                    ), "DDP Vdieo Inference only support a single dataset."
                    current_dataset = dataset.datasets[0]
                else:
                    current_dataset = dataset

                assert isinstance(
                    current_dataset, VideoDataset
                ), "Video based inference needs a VideoDataset."
                sampler = VideoInferenceSampler(current_dataset)
            else:
                sampler = DistributedSampler(dataset)
        else:
            sampler = None

        test_dataloader = DataLoader(
            dataset,
            batch_size=samples_per_gpu,
            num_workers=workers_per_gpu,
            sampler=sampler,
            shuffle=False,
            collate_fn=_collate_fn,
            persistent_workers=workers_per_gpu > 0,
        )
        dataloaders.append(test_dataloader)
    return dataloaders