Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,053 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
"""Omni3D 3D detection evaluation."""
import contextlib
import copy
import io
import itertools
import os
from collections.abc import Sequence
import numpy as np
from terminaltables import AsciiTable
from vis4d.common.logging import rank_zero_info
from vis4d.common.typing import GenericFunc, MetricLogs, NDArrayNumber
from vis4d.eval.base import Evaluator
from opendet3d.data.datasets.omni3d.omni3d_classes import omni3d_class_map
from opendet3d.data.datasets.omni3d.util import get_dataset_det_map
from .detect3d import Detect3Deval, Detect3DEvaluator
omni3d_in = {
"stationery",
"sink",
"table",
"floor mat",
"bottle",
"bookcase",
"bin",
"blinds",
"pillow",
"bicycle",
"refrigerator",
"night stand",
"chair",
"sofa",
"books",
"oven",
"towel",
"cabinet",
"window",
"curtain",
"bathtub",
"laptop",
"desk",
"television",
"clothes",
"stove",
"cup",
"shelves",
"box",
"shoes",
"mirror",
"door",
"picture",
"lamp",
"machine",
"counter",
"bed",
"toilet",
}
omni3d_out = {
"cyclist",
"pedestrian",
"trailer",
"bus",
"motorcycle",
"car",
"barrier",
"truck",
"van",
"traffic cone",
"bicycle",
}
class Omni3DEvaluator(Evaluator):
"""Omni3D 3D detection evaluator."""
def __init__(
self,
data_root: str = "data/omni3d",
omni3d50: bool = True,
datasets: Sequence[str] = (
"KITTI_test",
"nuScenes_test",
"SUNRGBD_test",
"Hypersim_test",
"ARKitScenes_test",
"Objectron_test",
),
per_class_eval: bool = True,
) -> None:
"""Initialize the evaluator."""
super().__init__()
self.id_to_name = {v: k for k, v in omni3d_class_map.items()}
self.dataset_names = datasets
self.per_class_eval = per_class_eval
# Each dataset evaluator is stored here
self.evaluators: dict[str, Detect3DEvaluator] = {}
# These store the evaluations for each category and area,
# concatenated from ALL evaluated datasets. Doing so avoids
# the need to re-compute them when accumulating results.
self.evals_per_cat_area2D = {}
self.evals_per_cat_area3D = {}
self.overall_imgIds = set()
self.overall_catIds = set()
for dataset_name in self.dataset_names:
annotation = os.path.join(
data_root, "annotations", f"{dataset_name}.json"
)
det_map = get_dataset_det_map(
dataset_name=dataset_name, omni3d50=omni3d50
)
# create an individual dataset evaluator
self.evaluators[dataset_name] = Detect3DEvaluator(
det_map,
cat_map=omni3d_class_map,
annotation=annotation,
eval_prox=(
"Objectron" in dataset_name or "SUNRGBD" in dataset_name
),
)
self.overall_imgIds.update(
set(self.evaluators[dataset_name]._coco_gt.getImgIds())
)
self.overall_catIds.update(
set(self.evaluators[dataset_name]._coco_gt.getCatIds())
)
def __repr__(self) -> str:
"""Returns the string representation of the object."""
datasets_str = ", ".join(self.dataset_names)
return f"Omni3DEvaluator ({datasets_str})"
@property
def metrics(self) -> list[str]:
"""Supported metrics.
Returns:
list[str]: Metrics to evaluate.
"""
return ["2D", "3D"]
def reset(self) -> None:
"""Reset the saved predictions to start new round of evaluation."""
for dataset_name in self.dataset_names:
self.evaluators[dataset_name].reset()
self.evals_per_cat_area2D.clear()
self.evals_per_cat_area3D.clear()
def gather(self, gather_func: GenericFunc) -> None:
"""Accumulate predictions across processes."""
for dataset_name in self.dataset_names:
self.evaluators[dataset_name].gather(gather_func)
def process_batch(
self,
coco_image_id: list[int],
dataset_names: list[str],
pred_boxes: list[NDArrayNumber],
pred_scores: list[NDArrayNumber],
pred_classes: list[NDArrayNumber],
pred_boxes3d: list[NDArrayNumber] | None = None,
) -> None:
"""Process sample and convert detections to coco format."""
for i, dataset_name in enumerate(dataset_names):
self.evaluators[dataset_name].process_batch(
[coco_image_id[i]],
[pred_boxes[i]],
[pred_scores[i]],
[pred_classes[i]],
pred_boxes3d=[pred_boxes3d[i]] if pred_boxes3d else None,
)
def evaluate(self, metric: str) -> tuple[MetricLogs, str]:
"""Evaluate predictions and return the results."""
assert metric in self.metrics, f"Unsupported metric: {metric}"
log_dict = {}
for dataset_name in self.dataset_names:
rank_zero_info(f"Evaluating {dataset_name}...")
per_dataset_log_dict, dataset_log_str = self.evaluators[
dataset_name
].evaluate(metric)
log_dict[f"AP_{dataset_name}"] = per_dataset_log_dict["AP"]
rank_zero_info(dataset_log_str + "\n")
# store the partially accumulated evaluations per category per area
if metric == "2D":
for key, item in self.evaluators[
dataset_name
].bbox_2D_evals_per_cat_area.items():
if not key in self.evals_per_cat_area2D:
self.evals_per_cat_area2D[key] = []
self.evals_per_cat_area2D[key] += item
else:
for key, item in self.evaluators[
dataset_name
].bbox_3D_evals_per_cat_area.items():
if not key in self.evals_per_cat_area3D:
self.evals_per_cat_area3D[key] = []
self.evals_per_cat_area3D[key] += item
results_per_category_dict = {}
results_per_category = []
rank_zero_info(f"Evaluating Omni3D for {metric} Detection...")
evaluator = Detect3Deval(mode=metric)
evaluator.params.catIds = list(self.overall_catIds)
evaluator.params.imgIds = list(self.overall_imgIds)
evaluator.evalImgs = True
if metric == "2D":
evaluator.evals_per_cat_area = self.evals_per_cat_area2D
metrics = ["AP", "AP50", "AP75", "AP95", "APs", "APm", "APl"]
else:
evaluator.evals_per_cat_area = self.evals_per_cat_area3D
metrics = ["AP", "AP15", "AP25", "AP50", "APn", "APm", "APf"]
evaluator._paramsEval = copy.deepcopy(evaluator.params)
with contextlib.redirect_stdout(io.StringIO()):
evaluator.accumulate()
log_str = "\n" + evaluator.summarize()
log_dict.update(dict(zip(metrics, evaluator.stats)))
if self.per_class_eval:
precisions = evaluator.eval["precision"]
for idx, cat_id in enumerate(self.overall_catIds):
cat_name = self.id_to_name[cat_id]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = float(np.mean(precision).item())
else:
ap = float("nan")
results_per_category_dict[cat_name] = ap
results_per_category.append((f"{cat_name}", f"{ap:0.3f}"))
num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ["category", "AP"] * (num_columns // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::num_columns] for i in range(num_columns)]
)
table_data = [headers] + list(results_2d)
table = AsciiTable(table_data)
log_str = f"\n{table.table}\n{log_str}"
# Omni3D Outdoor performance
ap_out_lst = []
for cat in omni3d_out:
ap_out_lst.append(results_per_category_dict.get(cat, 0.0))
log_dict["Omni3D_Out"] = np.mean(ap_out_lst).item()
# Omni3D Indoor performance
ap_in_lst = []
for cat in omni3d_in:
ap_in_lst.append(results_per_category_dict.get(cat, 0.0))
log_dict["Omni3D_In"] = np.mean(ap_in_lst).item()
return log_dict, log_str
def save(self, metric: str, output_dir: str) -> None:
"""Save the results to json files."""
for dataset_name in self.dataset_names:
self.evaluators[dataset_name].save(
metric, output_dir, prefix=dataset_name
)
|