Talk2TaskDemo1 / app.py
RishiRP's picture
Update app.py
e84ddb8 verified
raw
history blame
43.6 kB
import os
import re
import io
import json
import time
import zipfile
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
import pandas as pd
import gradio as gr
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
GenerationConfig,
LlamaTokenizer, # manual fallback
)
from huggingface_hub import hf_hub_download
# =========================
# Global config
# =========================
SPACE_CACHE = Path.home() / ".cache" / "huggingface"
SPACE_CACHE.mkdir(parents=True, exist_ok=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Force slow path by default; avoid Rust tokenizer JSON parsing
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("TOKENIZERS_PREFER_FAST", "false")
GEN_CONFIG = GenerationConfig(
temperature=0.0,
top_p=1.0,
do_sample=False,
max_new_tokens=128, # raise if JSON truncates
)
OFFICIAL_LABELS = [
"plan_contact",
"schedule_meeting",
"update_contact_info_non_postal",
"update_contact_info_postal_address",
"update_kyc_activity",
"update_kyc_origin_of_assets",
"update_kyc_purpose_of_businessrelation",
"update_kyc_total_assets",
]
OFFICIAL_LABELS_TEXT = "\n".join(OFFICIAL_LABELS)
# =========================
# Editable defaults (shown in UI)
# =========================
DEFAULT_SYSTEM_INSTRUCTIONS = (
"You extract ACTIONABLE TASKS from client–advisor transcripts. "
"The transcript may be in German, French, Italian, or English. "
"Prioritize RECALL: if a label plausibly applies, include it. "
"Use ONLY the canonical labels provided. "
"Return STRICT JSON only with keys 'labels' and 'tasks'. "
"Each task must include 'label', a brief 'explanation', and a short 'evidence' quote from the transcript."
)
DEFAULT_LABEL_GLOSSARY = {
"plan_contact": "Commitment to contact later (advisor/client will reach out, follow-up promised).",
"schedule_meeting": "Scheduling or confirming a meeting/call/appointment (time/date/slot/virtual).",
"update_contact_info_non_postal": "Change or confirmation of phone/email (non-postal contact details).",
"update_contact_info_postal_address": "Change or confirmation of postal/residential/mailing address.",
"update_kyc_activity": "Change/confirmation of occupation, employment status, or economic activity.",
"update_kyc_origin_of_assets": "Discussion/confirmation of source of funds / origin of assets.",
"update_kyc_purpose_of_businessrelation": "Purpose of the banking relationship/account usage.",
"update_kyc_total_assets": "Discussion/confirmation of total assets/net worth.",
}
# Minimal multilingual fallback rules (optional)
DEFAULT_FALLBACK_CUES = {
"plan_contact": [
r"\b(get|got|will|we'?ll|i'?ll)\s+back to you\b", r"\bfollow\s*up\b", r"\breach out\b", r"\btouch base\b",
r"\bcontact (you|me|us)\b",
r"\bin verbindung setzen\b", r"\brückmeldung\b", r"\bich\s+melde\b|\bwir\s+melden\b", r"\bnachfassen\b",
r"\bje vous recontacte\b|\bnous vous recontacterons\b", r"\bprendre contact\b|\breprendre contact\b",
r"\bla ricontatter[oò]\b|\bci metteremo in contatto\b", r"\btenersi in contatto\b",
],
"schedule_meeting": [
r"\b(let'?s\s+)?meet(ing|s)?\b", r"\bschedule( a)? (call|meeting|appointment)\b",
r"\bbook( a)? (slot|time|meeting)\b", r"\b(next week|tomorrow|this (afternoon|morning|evening))\b",
r"\bconfirm( the)? (time|meeting|appointment)\b",
r"\btermin(e|s)?\b|\bvereinbaren\b|\bansetzen\b|\babstimmen\b|\bbesprechung(en)?\b|\bvirtuell(e|en)?\b",
r"\bnächste(n|r)? woche\b|\b(dienstag|montag|mittwoch|donnerstag|freitag)\b|\bnachmittag|vormittag|morgen\b",
r"\brendez[- ]?vous\b|\bréunion\b|\bfixer\b|\bplanifier\b|\bse rencontrer\b|\bse voir\b",
r"\bla semaine prochaine\b|\bdemain\b|\bcet (après-midi|apres-midi|après midi|apres midi|matin|soir)\b",
r"\bappuntamento\b|\briunione\b|\borganizzare\b|\bprogrammare\b|\bincontrarci\b|\bcalendario\b",
r"\bla prossima settimana\b|\bdomani\b|\b(questo|questa)\s*(pomeriggio|mattina|sera)\b",
],
"update_kyc_origin_of_assets": [
r"\bsource of funds\b|\borigin of assets\b|\bproof of (funds|assets)\b",
r"\bvermögensursprung(e|s)?\b|\bherkunft der mittel\b|\bnachweis\b",
r"\borigine des fonds\b|\borigine du patrimoine\b|\bjustificatif(s)?\b",
r"\borigine dei fondi\b|\borigine del patrimonio\b|\bprova dei fondi\b|\bgiustificativo\b",
],
"update_kyc_activity": [
r"\bemployment status\b|\boccupation\b|\bjob change\b|\bsalary history\b",
r"\bbeschäftigungsstatus\b|\bberuf\b|\bjobwechsel\b|\bgehaltshistorie\b|\btätigkeit\b",
r"\bstatut professionnel\b|\bprofession\b|\bchangement d'emploi\b|\bhistorique salarial\b|\bactivité\b",
r"\bstato occupazionale\b|\bprofessione\b|\bcambio di lavoro\b|\bstoria salariale\b|\battivit[aà]\b",
],
}
# =========================
# Prompt template
# =========================
USER_PROMPT_TEMPLATE = (
"Transcript (may be DE/FR/IT/EN):\n"
"```\n{transcript}\n```\n\n"
"Allowed Labels (canonical; use only these):\n"
"{allowed_labels_list}\n\n"
"Label Glossary (concise semantics):\n"
"{glossary}\n\n"
"Return STRICT JSON ONLY in this exact schema:\n"
'{\n "labels": ["<Label1>", "..."],\n'
' "tasks": [{"label": "<Label1>", "explanation": "<why>", "evidence": "<quote>"}]\n}\n'
)
# =========================
# Utilities
# =========================
def _now_ms() -> int:
return int(time.time() * 1000)
def normalize_labels(labels: List[str]) -> List[str]:
return list(dict.fromkeys([l.strip() for l in labels if isinstance(l, str) and l.strip()]))
def canonicalize_map(allowed: List[str]) -> Dict[str, str]:
return {lab.lower(): lab for lab in allowed}
def robust_json_extract(text: str) -> Dict[str, Any]:
if not text:
return {"labels": [], "tasks": []}
start, end = text.find("{"), text.rfind("}")
candidate = text[start:end+1] if (start != -1 and end != -1 and end > start) else text
try:
return json.loads(candidate)
except Exception:
candidate = re.sub(r",\s*}", "}", candidate)
candidate = re.sub(r",\s*]", "]", candidate)
try:
return json.loads(candidate)
except Exception:
return {"labels": [], "tasks": []}
def restrict_to_allowed(pred: Dict[str, Any], allowed: List[str]) -> Dict[str, Any]:
out = {"labels": [], "tasks": []}
allowed_map = canonicalize_map(allowed)
filt_labels = []
for l in pred.get("labels", []) or []:
k = str(l).strip().lower()
if k in allowed_map:
filt_labels.append(allowed_map[k])
filt_labels = normalize_labels(filt_labels)
filt_tasks = []
for t in pred.get("tasks", []) or []:
if not isinstance(t, dict):
continue
k = str(t.get("label", "")).strip().lower()
if k in allowed_map:
new_t = dict(t); new_t["label"] = allowed_map[k]
new_t = {
"label": new_t["label"],
"explanation": str(new_t.get("explanation", ""))[:300],
"evidence": str(new_t.get("evidence", ""))[:300],
}
filt_tasks.append(new_t)
merged = normalize_labels(list(set(filt_labels) | {tt["label"] for tt in filt_tasks}))
out["labels"] = merged
out["tasks"] = filt_tasks
return out
# =========================
# Pre-processing
# =========================
_DISCLAIMER_PATTERNS = [
r"(?is)^\s*(?:disclaimer|legal notice|confidentiality notice).+?(?:\n{2,}|$)",
r"(?is)^\s*the information contained.+?(?:\n{2,}|$)",
r"(?is)^\s*this message \(including any attachments\).+?(?:\n{2,}|$)",
]
_FOOTER_PATTERNS = [
r"(?is)\n+kind regards[^\n]*\n.*$", r"(?is)\n+best regards[^\n]*\n.*$",
r"(?is)\n+sent from my.*$", r"(?is)\n+ubs ag.*$",
]
_TIMESTAMP_SPEAKER = [
r"\[\d{1,2}:\d{2}(:\d{2})?\]",
r"^\s*(advisor|client|client advisor)\s*:\s*",
r"^\s*(speaker\s*\d+)\s*:\s*",
]
def clean_transcript(text: str) -> str:
if not text:
return text
s = text
# strip speaker/timestamps
lines = []
for ln in s.splitlines():
ln2 = ln
for pat in _TIMESTAMP_SPEAKER:
ln2 = re.sub(pat, "", ln2, flags=re.IGNORECASE)
lines.append(ln2)
s = "\n".join(lines)
# disclaimers (top)
for pat in _DISCLAIMER_PATTERNS:
s = re.sub(pat, "", s).strip()
# footers
for pat in _FOOTER_PATTERNS:
s = re.sub(pat, "", s)
# whitespace tidy
s = re.sub(r"[ \t]+", " ", s)
s = re.sub(r"\n{3,}", "\n\n", s).strip()
return s
def read_text_file_any(file_input) -> str:
if not file_input:
return ""
if isinstance(file_input, (str, Path)):
try:
return Path(file_input).read_text(encoding="utf-8", errors="ignore")
except Exception:
return ""
try:
data = file_input.read()
return data.decode("utf-8", errors="ignore")
except Exception:
return ""
def read_json_file_any(file_input) -> Optional[dict]:
if not file_input:
return None
if isinstance(file_input, (str, Path)):
try:
return json.loads(Path(file_input).read_text(encoding="utf-8", errors="ignore"))
except Exception:
return None
try:
return json.loads(file_input.read().decode("utf-8", errors="ignore"))
except Exception:
return None
def truncate_tokens(tokenizer, text: str, max_tokens: int) -> str:
toks = tokenizer(text, add_special_tokens=False)["input_ids"]
if len(toks) <= max_tokens:
return text
return tokenizer.decode(toks[-max_tokens:], skip_special_tokens=True)
# =========================
# Cache purge for fresh downloads
# =========================
def _purge_repo_from_cache(repo_id: str):
try:
base = SPACE_CACHE
safe = repo_id.replace("/", "--")
for p in base.glob(f"models--{safe}*"):
try:
if p.is_file():
p.unlink()
else:
for sub in sorted(p.rglob("*"), reverse=True):
try:
if sub.is_file() or sub.is_symlink():
sub.unlink()
else:
sub.rmdir()
except Exception:
pass
p.rmdir()
except Exception:
pass
except Exception:
pass
# =========================
# HF model wrapper (with manual LlamaTokenizer fallback)
# =========================
class ModelWrapper:
def __init__(self, repo_id: str, hf_token: Optional[str], load_in_4bit: bool, use_sdpa: bool, force_tok_redownload: bool):
self.repo_id = repo_id
self.hf_token = hf_token
self.load_in_4bit = load_in_4bit
self.use_sdpa = use_sdpa
self.force_tok_redownload = force_tok_redownload
self.tokenizer = None
self.model = None
self.load_path = "uninitialized"
def _try_auto_tokenizer(self, use_fast: bool):
return AutoTokenizer.from_pretrained(
self.repo_id,
token=self.hf_token,
cache_dir=str(SPACE_CACHE),
trust_remote_code=True,
local_files_only=False,
force_download=True if self.force_tok_redownload else False,
use_fast=use_fast,
)
def _try_manual_llama_tokenizer(self):
# Download only tokenizer.model; ignore tokenizer.json entirely
sp_path = hf_hub_download(repo_id=self.repo_id, filename="tokenizer.model", token=self.hf_token, cache_dir=str(SPACE_CACHE))
tok = LlamaTokenizer(vocab_file=sp_path)
if tok.pad_token is None and tok.eos_token:
tok.pad_token = tok.eos_token
return tok
def _load_tokenizer(self):
if self.force_tok_redownload:
_purge_repo_from_cache(self.repo_id)
# 1) Slow auto
try:
tok = self._try_auto_tokenizer(use_fast=False)
if tok.pad_token is None and tok.eos_token:
tok.pad_token = tok.eos_token
self.load_path = "tok:AUTO_SLOW"
return tok
except Exception:
pass
# 2) Manual LlamaTokenizer from tokenizer.model
try:
tok = self._try_manual_llama_tokenizer()
self.load_path = "tok:LLAMA_SPM"
return tok
except Exception:
pass
# 3) Fast auto (last resort)
tok = self._try_auto_tokenizer(use_fast=True) # will raise if broken
if tok.pad_token is None and tok.eos_token:
tok.pad_token = tok.eos_token
self.load_path = "tok:AUTO_FAST"
return tok
def load(self):
qcfg = None
if self.load_in_4bit and DEVICE == "cuda":
qcfg = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
tok = self._load_tokenizer()
errors = []
for desc, kwargs in [
("auto_device_no_lowcpu" + ("_sdpa" if (self.use_sdpa and DEVICE=="cuda") else ""),
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=False,
quantization_config=qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
attn_implementation=("sdpa" if (self.use_sdpa and DEVICE == "cuda") else None),
)),
("auto_device_no_sdpa",
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map="auto" if DEVICE == "cuda" else None,
low_cpu_mem_usage=False,
quantization_config=qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
)),
("cpu_then_to_cuda" if DEVICE == "cuda" else "cpu_only",
dict(
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
device_map=None,
low_cpu_mem_usage=False,
quantization_config=None if DEVICE != "cuda" else qcfg,
trust_remote_code=True,
cache_dir=str(SPACE_CACHE),
)),
]:
try:
mdl = AutoModelForCausalLM.from_pretrained(self.repo_id, token=self.hf_token, **kwargs)
if desc.startswith("cpu_then_to_cuda") and DEVICE == "cuda":
mdl = mdl.to(torch.device("cuda"))
self.tokenizer = tok
self.model = mdl
self.load_path = f"{self.load_path} | {desc}"
return
except Exception as e:
errors.append(f"{desc}: {e}")
raise RuntimeError("All load attempts failed:\n" + "\n".join(errors))
@torch.inference_mode()
def generate(self, system_prompt: str, user_prompt: str) -> str:
if hasattr(self.tokenizer, "apply_chat_template"):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
input_ids = self.tokenizer.apply_chat_template(
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
)
input_ids = input_ids.to(self.model.device)
gen_kwargs = dict(
input_ids=input_ids,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
else:
enc = self.tokenizer(
f"<s>[SYSTEM]\n{system_prompt}\n[/SYSTEM]\n[USER]\n{user_prompt}\n[/USER]\n",
return_tensors="pt"
).to(self.model.device)
gen_kwargs = dict(
**enc,
generation_config=GEN_CONFIG,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
with torch.cuda.amp.autocast(enabled=(DEVICE == "cuda")):
out_ids = self.model.generate(**gen_kwargs)
return self.tokenizer.decode(out_ids[0], skip_special_tokens=True)
_MODEL_CACHE: Dict[str, ModelWrapper] = {}
def get_model(repo_id: str, hf_token: Optional[str], load_in_4bit: bool, use_sdpa: bool, force_tok_redownload: bool) -> ModelWrapper:
key = f"{repo_id}::{'4bit' if (load_in_4bit and DEVICE=='cuda') else 'full'}::{'sdpa' if use_sdpa else 'nosdpa'}::{'force' if force_tok_redownload else 'cache'}"
if key not in _MODEL_CACHE:
m = ModelWrapper(repo_id, hf_token, load_in_4bit, use_sdpa, force_tok_redownload)
m.load()
_MODEL_CACHE[key] = m
return _MODEL_CACHE[key]
# =========================
# Evaluation (official weighted score)
# =========================
def evaluate_predictions(y_true: List[List[str]], y_pred: List[List[str]]) -> float:
ALLOWED_LABELS = OFFICIAL_LABELS
LABEL_TO_IDX = {label: idx for idx, label in enumerate(ALLOWED_LABELS)}
def _process_sample_labels(sample_labels: List[str], sample_name: str) -> List[str]:
if not isinstance(sample_labels, list):
raise ValueError(f"{sample_name} must be a list of strings, got {type(sample_labels)}")
seen, uniq = set(), []
for label in sample_labels:
if not isinstance(label, str):
raise ValueError(f"{sample_name} contains non-string: {label} (type: {type(label)})")
if label in seen:
raise ValueError(f"{sample_name} contains duplicate label: '{label}'")
if label not in ALLOWED_LABELS:
raise ValueError(f"{sample_name} contains invalid label: '{label}'. Allowed: {ALLOWED_LABELS}")
seen.add(label); uniq.append(label)
return uniq
if len(y_true) != len(y_pred):
raise ValueError(f"y_true and y_pred must have same length. Got {len(y_true)} vs {len(y_pred)}")
n_samples = len(y_true)
n_labels = len(OFFICIAL_LABELS)
y_true_binary = np.zeros((n_samples, n_labels), dtype=int)
y_pred_binary = np.zeros((n_samples, n_labels), dtype=int)
for i, sample_labels in enumerate(y_true):
for label in _process_sample_labels(sample_labels, f"y_true[{i}]"):
y_true_binary[i, LABEL_TO_IDX[label]] = 1
for i, sample_labels in enumerate(y_pred):
for label in _process_sample_labels(sample_labels, f"y_pred[{i}]"):
y_pred_binary[i, LABEL_TO_IDX[label]] = 1
fn = np.sum((y_true_binary == 1) & (y_pred_binary == 0), axis=1)
fp = np.sum((y_true_binary == 0) & (y_pred_binary == 1), axis=1)
weighted = 2.0 * fn + 1.0 * fp
max_err = 2.0 * np.sum(y_true_binary, axis=1) + 1.0 * (n_labels - np.sum(y_true_binary, axis=1))
per_sample = np.where(max_err > 0, 1.0 - (weighted / max_err), 1.0)
return float(max(0.0, min(1.0, np.mean(per_sample))))
# =========================
# Multilingual regex fallback (optional)
# =========================
def multilingual_fallback(text: str, allowed: List[str], cues: Dict[str, List[str]]) -> Dict[str, Any]:
low = text.lower()
labels, tasks = [], []
for lab in allowed:
for pat in cues.get(lab, []):
m = re.search(pat, low)
if m:
i = m.start()
start = max(0, i - 60); end = min(len(text), i + len(m.group(0)) + 60)
if lab not in labels:
labels.append(lab)
tasks.append({
"label": lab,
"explanation": "Rule hit (multilingual fallback)",
"evidence": text[start:end].strip()
})
break
return {"labels": normalize_labels(labels), "tasks": tasks}
# =========================
# Inference helpers
# =========================
def build_glossary_str(glossary: Dict[str, str], allowed: List[str]) -> str:
return "\n".join([f"- {lab}: {glossary.get(lab, '')}" for lab in allowed])
def warmup_model(model_repo: str, use_4bit: bool, use_sdpa: bool, hf_token: str, force_tok_redownload: bool) -> str:
t0 = _now_ms()
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
_ = model.generate("Return JSON only.", '{"labels": [], "tasks": []}')
return f"Warm-up complete in {_now_ms() - t0} ms. Load path: {model.load_path}"
except Exception as e:
return f"Warm-up failed: {e}"
def run_single(
transcript_text: str,
transcript_file,
gt_json_text: str,
gt_json_file,
use_cleaning: bool,
use_fallback: bool,
allowed_labels_text: str,
sys_instructions_text: str,
glossary_json_text: str,
fallback_json_text: str,
model_repo: str,
use_4bit: bool,
use_sdpa: bool,
max_input_tokens: int,
hf_token: str,
force_tok_redownload: bool,
) -> Tuple[str, str, str, str, str, str, str, str, str]:
t0 = _now_ms()
raw_text = ""
if transcript_file:
raw_text = read_text_file_any(transcript_file)
raw_text = (raw_text or transcript_text or "").strip()
if not raw_text:
return "", "", "No transcript provided.", "", "", "", "", "", ""
text = clean_transcript(raw_text) if use_cleaning else raw_text
user_allowed = [ln.strip() for ln in (allowed_labels_text or "").splitlines() if ln.strip()]
allowed = normalize_labels(user_allowed or OFFICIAL_LABELS)
try:
sys_instructions = (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS).strip() or DEFAULT_SYSTEM_INSTRUCTIONS
except Exception:
sys_instructions = DEFAULT_SYSTEM_INSTRUCTIONS
try:
label_glossary = json.loads(glossary_json_text) if glossary_json_text else DEFAULT_LABEL_GLOSSARY
except Exception:
label_glossary = DEFAULT_LABEL_GLOSSARY
try:
fallback_cues = json.loads(fallback_json_text) if fallback_json_text else DEFAULT_FALLBACK_CUES
except Exception:
fallback_cues = DEFAULT_FALLBACK_CUES
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
except Exception as e:
return "", "", f"Model load failed: {e}", "", "", "", "", "", ""
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
glossary_str = build_glossary_str(label_glossary, allowed)
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
glossary=glossary_str,
)
transcript_tokens = len(model.tokenizer(trunc, add_special_tokens=False)["input_ids"])
prompt_tokens = len(model.tokenizer(user_prompt, add_special_tokens=False)["input_ids"])
token_info_text = f"Transcript tokens: {transcript_tokens} | Prompt tokens: {prompt_tokens} | Load path: {model.load_path}"
prompt_preview_text = "```\n" + user_prompt[:4000] + ("\n... (truncated)" if len(user_prompt) > 4000 else "") + "\n```"
t1 = _now_ms()
try:
out = model.generate(sys_instructions, user_prompt)
except Exception as e:
return "", "", f"Generation error: {e}", "", "", "", prompt_preview_text, token_info_text, ""
t2 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
if use_fallback:
fb = multilingual_fallback(trunc, allowed, fallback_cues)
if fb["labels"]:
merged_labels = sorted(list(set(filtered.get("labels", [])) | set(fb["labels"])))
existing = {tt.get("label") for tt in filtered.get("tasks", [])}
merged_tasks = filtered.get("tasks", []) + [t for t in fb["tasks"] if t["label"] not in existing]
filtered = {"labels": merged_labels, "tasks": merged_tasks}
diag = "\n".join([
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Input cleaned: {'Yes' if use_cleaning else 'No'}",
f"Fallback rules: {'Yes' if use_fallback else 'No'}",
f"SDPA attention: {'Yes' if use_sdpa else 'No'}",
f"Tokens (input limit): ≤ {max_input_tokens}",
f"Latency: prep {t1-t0} ms, gen {t2-t1} ms, total {t2-t0} ms",
f"Allowed labels: {', '.join(allowed)}",
])
labs = filtered.get("labels", [])
tasks = filtered.get("tasks", [])
summary = "Detected labels:\n" + ("\n".join(f"- {l}" for l in labs) if labs else "(none)")
if tasks:
summary += "\n\nTasks:\n" + "\n".join(
f"• [{t['label']}] {t.get('explanation','')} | ev: {t.get('evidence','')[:140]}{'…' if len(t.get('evidence',''))>140 else ''}"
for t in tasks
)
else:
summary += "\n\nTasks: (none)"
json_out = json.dumps(filtered, indent=2, ensure_ascii=False)
metrics = ""
if gt_json_file or (gt_json_text and gt_json_text.strip()):
truth_obj = None
if gt_json_file:
truth_obj = read_json_file_any(gt_json_file)
if (not truth_obj) and gt_json_text:
try:
truth_obj = json.loads(gt_json_text)
except Exception:
pass
if isinstance(truth_obj, dict) and isinstance(truth_obj.get("labels"), list):
true_labels = [x for x in truth_obj["labels"] if x in OFFICIAL_LABELS]
pred_labels = labs
try:
score = evaluate_predictions([true_labels], [pred_labels])
tp = len(set(true_labels) & set(pred_labels))
fp = len(set(pred_labels) - set(true_labels))
fn = len(set(true_labels) - set(pred_labels))
recall = tp / (tp + fn) if (tp + fn) else 1.0
precision = tp / (tp + fp) if (tp + fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
metrics = (
f"Weighted score: {score:.3f}\n"
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}\n"
f"TP={tp} FP={fp} FN={fn}\n"
f"Truth: {', '.join(true_labels)}"
)
except Exception as e:
metrics = f"Scoring error: {e}"
else:
metrics = "Ground truth JSON missing or invalid; expected {'labels': [...]}."
context_preview = "### Label Glossary (used)\n" + "\n".join(f"- {k}: {v}" for k, v in DEFAULT_LABEL_GLOSSARY.items() if k in allowed)
instructions_preview = "```\n" + (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS) + "\n```"
return summary, json_out, diag, out.strip(), context_preview, instructions_preview, metrics, prompt_preview_text, token_info_text
# =========================
# Batch mode
# =========================
def read_zip_from_path(path: str, exdir: Path) -> List[Path]:
exdir.mkdir(parents=True, exist_ok=True)
with open(path, "rb") as f:
data = f.read()
with zipfile.ZipFile(io.BytesIO(data)) as zf:
zf.extractall(exdir)
return [p for p in exdir.rglob("*") if p.is_file()]
def run_batch(
zip_path,
use_cleaning: bool,
use_fallback: bool,
sys_instructions_text: str,
glossary_json_text: str,
fallback_json_text: str,
model_repo: str,
use_4bit: bool,
use_sdpa: bool,
max_input_tokens: int,
hf_token: str,
force_tok_redownload: bool,
limit_files: int,
) -> Tuple[str, str, pd.DataFrame, str]:
if not zip_path:
return ("No ZIP provided.", "", pd.DataFrame(), "")
try:
sys_instructions = (sys_instructions_text or DEFAULT_SYSTEM_INSTRUCTIONS).strip() or DEFAULT_SYSTEM_INSTRUCTIONS
except Exception:
sys_instructions = DEFAULT_SYSTEM_INSTRUCTIONS
try:
label_glossary = json.loads(glossary_json_text) if glossary_json_text else DEFAULT_LABEL_GLOSSARY
except Exception:
label_glossary = DEFAULT_LABEL_GLOSSARY
try:
fallback_cues = json.loads(fallback_json_text) if fallback_json_text else DEFAULT_FALLBACK_CUES
except Exception:
fallback_cues = DEFAULT_FALLBACK_CUES
work = Path("/tmp/batch")
if work.exists():
for p in sorted(work.rglob("*"), reverse=True):
try: p.unlink()
except Exception: pass
try: work.rmdir()
except Exception: pass
work.mkdir(parents=True, exist_ok=True)
files = read_zip_from_path(zip_path, work)
txts: Dict[str, Path] = {}
gts: Dict[str, Path] = {}
for p in files:
if p.suffix.lower() == ".txt":
txts[p.stem] = p
elif p.suffix.lower() == ".json":
gts[p.stem] = p
stems = sorted(txts.keys())
if limit_files > 0:
stems = stems[:limit_files]
if not stems:
return ("No .txt transcripts found in ZIP.", "", pd.DataFrame(), "")
try:
model = get_model(model_repo, (hf_token or "").strip() or None, use_4bit, use_sdpa, force_tok_redownload)
except Exception as e:
return (f"Model load failed: {e}", "", pd.DataFrame(), "")
allowed = OFFICIAL_LABELS[:]
glossary_str = build_glossary_str(label_glossary, allowed)
allowed_list_str = "\n".join(f"- {l}" for l in allowed)
y_true, y_pred = [], []
rows = []
t_start = _now_ms()
for stem in stems:
raw = txts[stem].read_text(encoding="utf-8", errors="ignore")
text = clean_transcript(raw) if use_cleaning else raw
trunc = truncate_tokens(model.tokenizer, text, max_input_tokens)
user_prompt = USER_PROMPT_TEMPLATE.format(
transcript=trunc,
allowed_labels_list=allowed_list_str,
glossary=glossary_str,
)
t0 = _now_ms()
out = model.generate(sys_instructions, user_prompt)
t1 = _now_ms()
parsed = robust_json_extract(out)
filtered = restrict_to_allowed(parsed, allowed)
if use_fallback:
fb = multilingual_fallback(trunc, allowed, fallback_cues)
if fb["labels"]:
merged_labels = sorted(list(set(filtered.get("labels", [])) | set(fb["labels"])))
existing = {tt.get("label") for tt in filtered.get("tasks", [])}
merged_tasks = filtered.get("tasks", []) + [t for t in fb["tasks"] if t["label"] not in existing]
filtered = {"labels": merged_labels, "tasks": merged_tasks}
pred_labels = filtered.get("labels", [])
y_pred.append(pred_labels)
gt_labels = []
if stem in gts:
try:
gt_obj = json.loads(gts[stem].read_text(encoding="utf-8", errors="ignore"))
if isinstance(gt_obj, dict) and isinstance(gt_obj.get("labels"), list):
gt_labels = [x for x in gt_obj["labels"] if x in OFFICIAL_LABELS]
except Exception:
pass
y_true.append(gt_labels)
gt_set, pr_set = set(gt_labels), set(pred_labels)
tp = sorted(gt_set & pr_set)
fp = sorted(pr_set - gt_set)
fn = sorted(gt_set - pr_set)
rows.append({
"file": stem,
"true_labels": ", ".join(gt_labels),
"pred_labels": ", ".join(pred_labels),
"TP": len(tp), "FP": len(fp), "FN": len(fn),
"gen_ms": t1 - t0
})
have_truth = any(len(v) > 0 for v in y_true)
score = evaluate_predictions(y_true, y_pred) if have_truth else None
df = pd.DataFrame(rows).sort_values(["FN", "FP", "file"])
diag = [
f"Processed files: {len(stems)}",
f"Device: {DEVICE} (4-bit: {'Yes' if (use_4bit and DEVICE=='cuda') else 'No'})",
f"Model: {model_repo}",
f"Fallback rules: {'Yes' if use_fallback else 'No'}",
f"SDPA attention: {'Yes' if use_sdpa else 'No'}",
f"Tokens (input limit): ≤ {max_input_tokens}",
f"Batch time: {_now_ms()-t_start} ms",
]
if have_truth and score is not None:
total_tp = int(df["TP"].sum())
total_fp = int(df["FP"].sum())
total_fn = int(df["FN"].sum())
recall = total_tp / (total_tp + total_fn) if (total_tp + total_fn) else 1.0
precision = total_tp / (total_tp + total_fp) if (total_tp + total_fp) else 1.0
f1 = (2 * precision * recall / (precision + recall)) if (precision + recall) else 1.0
diag += [
f"Official weighted score (0–1): {score:.3f}",
f"Recall: {recall:.3f} | Precision: {precision:.3f} | F1: {f1:.3f}",
f"Total TP={total_tp} FP={total_fp} FN={total_fn}",
]
diag_str = "\n".join(diag)
out_csv = Path("/tmp/batch_results.csv")
df.to_csv(out_csv, index=False, encoding="utf-8")
return ("Batch done.", diag_str, df, str(out_csv))
# =========================
# UI
# =========================
MODEL_CHOICES = [
"swiss-ai/Apertus-8B-Instruct-2509",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
]
# White, modern UI (no purple)
custom_css = """
:root { --radius: 14px; }
.gradio-container { font-family: Inter, ui-sans-serif, system-ui; background: #ffffff; color: #111827; }
.card { border: 1px solid #e5e7eb; border-radius: var(--radius); padding: 14px 16px; background: #ffffff; box-shadow: 0 1px 2px rgba(0,0,0,.03); }
.header { font-weight: 700; font-size: 22px; margin-bottom: 4px; color: #0f172a; }
.subtle { color: #475569; font-size: 14px; margin-bottom: 12px; }
hr.sep { border: none; border-top: 1px solid #e5e7eb; margin: 10px 0 16px; }
.gr-button { border-radius: 12px !important; }
a, .prose a { color: #0ea5e9; }
"""
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
gr.Markdown("<div class='header'>Talk2Task — Multilingual Task Extraction (UBS Challenge)</div>")
gr.Markdown("<div class='subtle'>Single-pass multilingual extraction (DE/FR/IT/EN). Optional rules fallback for recall. Batch evaluation included.</div>")
with gr.Tab("Single transcript"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>Transcript</div>")
file = gr.File(
label="Drag & drop transcript (.txt / .md / .json)",
file_types=[".txt", ".md", ".json"],
type="filepath",
)
text = gr.Textbox(label="Or paste transcript", lines=10, placeholder="Paste transcript in DE/FR/IT/EN…")
gr.Markdown("<hr class='sep'/>")
gr.Markdown("<div class='header'>Ground truth JSON (optional)</div>")
gt_file = gr.File(
label="Upload ground truth JSON (expects {'labels': [...]})",
file_types=[".json"],
type="filepath",
)
gt_text = gr.Textbox(label="Or paste ground truth JSON", lines=6, placeholder='{\"labels\": [\"schedule_meeting\"]}')
gr.Markdown("</div>") # close card
gr.Markdown("<div class='card'><div class='header'>Processing options</div>")
use_cleaning = gr.Checkbox(label="Apply default cleaning (remove disclaimers, timestamps, speakers, footers)", value=True)
use_fallback = gr.Checkbox(label="Enable multilingual fallback rule layer", value=True)
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Allowed labels</div>")
labels_text = gr.Textbox(label="Allowed Labels (one per line)", value=OFFICIAL_LABELS_TEXT, lines=8)
reset_btn = gr.Button("Reset to official labels")
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Editable instructions & context</div>")
sys_instr_tb = gr.Textbox(label="System Instructions (editable)", value=DEFAULT_SYSTEM_INSTRUCTIONS, lines=5)
glossary_tb = gr.Code(label="Label Glossary (JSON; editable)", value=json.dumps(DEFAULT_LABEL_GLOSSARY, indent=2), language="json")
fallback_tb = gr.Code(label="Fallback Cues (Multilingual, JSON; editable)", value=json.dumps(DEFAULT_FALLBACK_CUES, indent=2), language="json")
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>")
repo = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
use_sdpa = gr.Checkbox(label="Use SDPA attention (faster on many GPUs)", value=True)
force_tok_redownload = gr.Checkbox(label="Force fresh tokenizer download", value=False)
max_tokens = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=2048)
hf_token = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
warm_btn = gr.Button("Warm up model (load & compile kernels)")
run_btn = gr.Button("Run Extraction", variant="primary")
gr.Markdown("</div>")
gr.Markdown("<div class='card'><div class='header'>Outputs</div>")
summary = gr.Textbox(label="Summary", lines=12)
json_out = gr.Code(label="Strict JSON Output", language="json")
diag = gr.Textbox(label="Diagnostics", lines=10)
raw = gr.Textbox(label="Raw Model Output", lines=8)
metrics_tb = gr.Textbox(label="Metrics vs Ground Truth (optional)", lines=6)
prompt_preview = gr.Code(label="Prompt preview (user prompt sent)", language="markdown")
token_info = gr.Textbox(label="Token counts (transcript / prompt / load path)", lines=2)
gr.Markdown("</div>")
with gr.Row():
with gr.Column():
with gr.Accordion("Instructions used (system prompt)", open=False):
instr_md = gr.Markdown("```\n" + DEFAULT_SYSTEM_INSTRUCTIONS + "\n```")
with gr.Column():
with gr.Accordion("Context used (glossary)", open=True):
context_md = gr.Markdown("")
# Reset labels
reset_btn.click(fn=lambda: OFFICIAL_LABELS_TEXT, inputs=None, outputs=labels_text)
# Warm-up
warm_btn.click(
fn=warmup_model,
inputs=[repo, use_4bit, use_sdpa, hf_token, force_tok_redownload],
outputs=diag
)
def _pack_context_md(glossary_json, allowed_text):
try:
glossary = json.loads(glossary_json) if glossary_json else DEFAULT_LABEL_GLOSSARY
except Exception:
glossary = DEFAULT_LABEL_GLOSSARY
allowed_list = [ln.strip() for ln in (allowed_text or OFFICIAL_LABELS_TEXT).splitlines() if ln.strip()]
return "### Label Glossary (used)\n" + "\n".join(f"- {k}: {glossary.get(k,'')}" for k in allowed_list)
context_md.value = _pack_context_md(json.dumps(DEFAULT_LABEL_GLOSSARY), OFFICIAL_LABELS_TEXT)
# Run single
run_btn.click(
fn=run_single,
inputs=[
text, file, gt_text, gt_file, use_cleaning, use_fallback,
labels_text, sys_instr_tb, glossary_tb, fallback_tb,
repo, use_4bit, use_sdpa, max_tokens, hf_token, force_tok_redownload
],
outputs=[summary, json_out, diag, raw, context_md, instr_md, metrics_tb, prompt_preview, token_info],
)
with gr.Tab("Batch evaluation"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("<div class='card'><div class='header'>ZIP input</div>")
zip_in = gr.File(label="ZIP with transcripts (.txt) and truths (.json)", file_types=[".zip"], type="filepath")
use_cleaning_b = gr.Checkbox(label="Apply default cleaning", value=True)
use_fallback_b = gr.Checkbox(label="Enable multilingual fallback rule layer", value=True)
gr.Markdown("</div>")
with gr.Column(scale=2):
gr.Markdown("<div class='card'><div class='header'>Model & run</div>")
repo_b = gr.Dropdown(label="Model", choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
use_4bit_b = gr.Checkbox(label="Use 4-bit (GPU only)", value=True)
use_sdpa_b = gr.Checkbox(label="Use SDPA attention (faster on many GPUs)", value=True)
force_tok_redownload_b = gr.Checkbox(label="Force fresh tokenizer download", value=False)
max_tokens_b = gr.Slider(label="Max input tokens", minimum=1024, maximum=8192, step=512, value=2048)
hf_token_b = gr.Textbox(label="HF_TOKEN (only for gated models)", type="password", value=os.environ.get("HF_TOKEN",""))
sys_instr_tb_b = gr.Textbox(label="System Instructions (editable for batch)", value=DEFAULT_SYSTEM_INSTRUCTIONS, lines=4)
glossary_tb_b = gr.Code(label="Label Glossary (JSON; editable for batch)", value=json.dumps(DEFAULT_LABEL_GLOSSARY, indent=2), language="json")
fallback_tb_b = gr.Code(label="Fallback Cues (Multilingual, JSON; editable for batch)", value=json.dumps(DEFAULT_FALLBACK_CUES, indent=2), language="json")
limit_files = gr.Slider(label="Process at most N files (0 = all)", minimum=0, maximum=2000, step=10, value=0)
run_batch_btn = gr.Button("Run Batch", variant="primary")
gr.Markdown("</div>")
with gr.Row():
gr.Markdown("<div class='card'><div class='header'>Batch outputs</div>")
status = gr.Textbox(label="Status", lines=1)
diag_b = gr.Textbox(label="Batch diagnostics & metrics", lines=12)
df_out = gr.Dataframe(label="Per-file results (TP/FP/FN, latency)", interactive=False)
csv_out = gr.File(label="Download CSV", interactive=False)
gr.Markdown("</div>")
run_batch_btn.click(
fn=run_batch,
inputs=[
zip_in, use_cleaning_b, use_fallback_b,
sys_instr_tb_b, glossary_tb_b, fallback_tb_b,
repo_b, use_4bit_b, use_sdpa_b, max_tokens_b, hf_token_b, force_tok_redownload_b, limit_files
],
outputs=[status, diag_b, df_out, csv_out],
)
if __name__ == "__main__":
try:
print("Torch:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
if torch.cuda.is_available():
print("CUDA (compiled):", torch.version.cuda)
print("Device:", torch.cuda.get_device_name(0))
except Exception:
pass
demo.launch()