Spaces:
Running
Running
File size: 10,553 Bytes
ac5551c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
API Diagnostic Script
=====================
Comprehensive diagnostics for EASI Severity Prediction API
Checks dependencies, models, file paths, and numpy compatibility issues
"""
import sys
import os
from pathlib import Path
import importlib.util
def print_section(title):
"""Print a formatted section header"""
print("\n" + "=" * 70)
print(f" {title}")
print("=" * 70)
def check_python_environment():
"""Check Python version and environment"""
print_section("Python Environment")
print(f"Python Version: {sys.version}")
print(f"Python Executable: {sys.executable}")
print(f"Platform: {sys.platform}")
print(f"Current Working Directory: {os.getcwd()}")
def check_package_versions():
"""Check installed package versions"""
print_section("Package Versions")
packages = [
'numpy',
'tensorflow',
'fastapi',
'uvicorn',
'pillow',
'pandas',
'sklearn',
'pydantic',
]
for package in packages:
try:
if package == 'pillow':
import PIL
print(f"β PIL (Pillow): {PIL.__version__}")
elif package == 'sklearn':
import sklearn
print(f"β scikit-learn: {sklearn.__version__}")
else:
module = __import__(package)
version = getattr(module, '__version__', 'Unknown')
print(f"β {package}: {version}")
except ImportError as e:
print(f"β {package}: NOT INSTALLED - {e}")
except Exception as e:
print(f"β {package}: ERROR - {e}")
def check_numpy_detailed():
"""Detailed numpy diagnostics"""
print_section("NumPy Detailed Diagnostics")
try:
import numpy as np
print(f"β NumPy Version: {np.__version__}")
print(f"β NumPy Location: {np.__file__}")
# Check for numpy._core
try:
import numpy._core
print(f"β numpy._core exists: {numpy._core.__file__}")
except ImportError:
print("β numpy._core NOT FOUND (NumPy < 2.0)")
print(" This is the main issue! NumPy 2.0+ required for numpy._core")
# Check for numpy.core (old path)
try:
import numpy.core
print(f"β numpy.core exists: {numpy.core.__file__}")
except ImportError:
print("β numpy.core NOT FOUND")
# Check numpy configuration
print(f"\nNumPy Configuration:")
try:
np.show_config()
except:
print(" Could not show numpy config")
except ImportError as e:
print(f"β NumPy NOT INSTALLED: {e}")
except Exception as e:
print(f"β NumPy ERROR: {e}")
def check_tensorflow():
"""Check TensorFlow installation and GPU support"""
print_section("TensorFlow Diagnostics")
try:
import tensorflow as tf
print(f"β TensorFlow Version: {tf.__version__}")
print(f"β TensorFlow Location: {tf.__file__}")
print(f"β Built with CUDA: {tf.test.is_built_with_cuda()}")
print(f"β GPU Available: {len(tf.config.list_physical_devices('GPU')) > 0}")
# List devices
devices = tf.config.list_physical_devices()
print(f"\nAvailable Devices:")
for device in devices:
print(f" - {device}")
except ImportError as e:
print(f"β TensorFlow NOT INSTALLED: {e}")
except Exception as e:
print(f"β TensorFlow ERROR: {e}")
def check_model_files():
"""Check for required model files"""
print_section("Model Files Check")
# Check Derm Foundation model paths
print("\n1. Derm Foundation Model:")
derm_paths = [
"./derm_foundation/",
"./",
"./saved_model/",
"./model/",
"./derm-foundation/"
]
found_derm = False
for path in derm_paths:
saved_model_pb = os.path.join(path, "saved_model.pb")
if os.path.exists(saved_model_pb):
print(f" β Found: {saved_model_pb}")
print(f" Size: {os.path.getsize(saved_model_pb)} bytes")
found_derm = True
# Check for variables folder
variables_path = os.path.join(path, "variables")
if os.path.exists(variables_path):
print(f" Variables folder: {variables_path}")
var_files = os.listdir(variables_path)
print(f" Variable files: {len(var_files)}")
else:
print(f" β Not found: {saved_model_pb}")
if not found_derm:
print("\n β WARNING: No Derm Foundation model found!")
# Check EASI model
print("\n2. EASI Model:")
easi_path = './trained_model/easi_severity_model_derm_foundation_individual.pkl'
if os.path.exists(easi_path):
print(f" β Found: {easi_path}")
print(f" Size: {os.path.getsize(easi_path)} bytes")
# Try to peek at pickle contents
try:
import pickle
with open(easi_path, 'rb') as f:
try:
model_data = pickle.load(f)
print(f" Keys in model: {list(model_data.keys())}")
if 'keras_model_path' in model_data:
keras_path = model_data['keras_model_path']
print(f" Keras model path: {keras_path}")
if os.path.exists(keras_path):
print(f" β Keras model exists: {keras_path}")
else:
print(f" β Keras model NOT FOUND: {keras_path}")
except Exception as e:
print(f" β Error loading pickle: {e}")
except ImportError:
print(" β pickle module not available")
else:
print(f" β Not found: {easi_path}")
print(f" Current directory: {os.getcwd()}")
# Check if trained_model directory exists
if os.path.exists('./trained_model/'):
print(f" trained_model/ exists. Contents:")
for item in os.listdir('./trained_model/'):
print(f" - {item}")
def check_directory_structure():
"""Check directory structure"""
print_section("Directory Structure")
current_dir = os.getcwd()
print(f"Current Directory: {current_dir}\n")
# List all items in current directory
items = os.listdir('.')
print("Contents:")
for item in sorted(items):
path = os.path.join('.', item)
if os.path.isdir(path):
print(f" π {item}/")
else:
size = os.path.getsize(path)
print(f" π {item} ({size} bytes)")
def test_pickle_load():
"""Test if pickle can load with current numpy"""
print_section("Pickle Load Test")
easi_path = './trained_model/easi_severity_model_derm_foundation_individual.pkl'
if not os.path.exists(easi_path):
print(f"β Model file not found: {easi_path}")
return
try:
import pickle
import numpy as np
print(f"Attempting to load: {easi_path}")
print(f"NumPy version: {np.__version__}")
with open(easi_path, 'rb') as f:
model_data = pickle.load(f)
print("β Successfully loaded pickle file!")
print(f"Model data keys: {list(model_data.keys())}")
except ModuleNotFoundError as e:
print(f"β Module not found: {e}")
print("\n DIAGNOSIS: The pickle file was saved with a newer NumPy version.")
print(" SOLUTION: Upgrade numpy to version 2.0 or higher")
print(" Command: pip install --upgrade numpy>=2.0")
except Exception as e:
print(f"β Error loading pickle: {e}")
print(f" Error type: {type(e).__name__}")
def check_sklearn():
"""Check scikit-learn and its compatibility"""
print_section("Scikit-learn Diagnostics")
try:
import sklearn
print(f"β scikit-learn Version: {sklearn.__version__}")
# Check for common sklearn modules used in the model
try:
from sklearn.preprocessing import MultiLabelBinarizer, StandardScaler
print("β MultiLabelBinarizer available")
print("β StandardScaler available")
except ImportError as e:
print(f"β Import error: {e}")
except ImportError:
print("β scikit-learn NOT INSTALLED")
def provide_solutions():
"""Provide solutions based on diagnostics"""
print_section("Recommended Solutions")
print("""
Based on the error "No module named 'numpy._core'", here are the solutions:
1. UPGRADE NUMPY (Recommended):
pip install --upgrade numpy>=2.0.0
This is the cleanest solution as newer packages expect NumPy 2.0+
2. If NumPy 2.0 causes compatibility issues, RECREATE THE PICKLE:
- Load the original model with the old NumPy version
- Save it again with protocol 4 for better compatibility
- Or rebuild the model from scratch
3. CHECK ALL DEPENDENCIES:
pip install --upgrade tensorflow numpy pandas scikit-learn pillow fastapi uvicorn
4. CREATE FRESH VIRTUAL ENVIRONMENT:
python -m venv fresh_env
source fresh_env/bin/activate # On Windows: fresh_env\\Scripts\\activate
pip install -r requirements.txt
5. VERIFY PACKAGE COMPATIBILITY:
pip list --outdated
pip check
After upgrading, restart your API server.
""")
def main():
"""Run all diagnostics"""
print("=" * 70)
print(" EASI API DIAGNOSTIC TOOL")
print(" Analyzing system configuration and dependencies...")
print("=" * 70)
check_python_environment()
check_package_versions()
check_numpy_detailed()
check_tensorflow()
check_sklearn()
check_directory_structure()
check_model_files()
test_pickle_load()
provide_solutions()
print("\n" + "=" * 70)
print(" Diagnostics Complete!")
print("=" * 70)
if __name__ == "__main__":
main() |