Spaces:
Running
Running
File size: 36,509 Bytes
4721ef4 291b2db 4721ef4 291b2db 4721ef4 291b2db 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 291b2db 4721ef4 a6e4bae 4721ef4 291b2db 4721ef4 291b2db a6e4bae 4721ef4 291b2db 4721ef4 291b2db 4721ef4 291b2db 4721ef4 291b2db 4721ef4 a6e4bae 291b2db a6e4bae 4721ef4 8489fe2 7b883e9 8489fe2 4721ef4 8489fe2 4721ef4 8489fe2 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 291b2db 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 291b2db a6e4bae 291b2db a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 291b2db a6e4bae 4721ef4 291b2db a6e4bae 4721ef4 a6e4bae 4721ef4 291b2db a6e4bae 291b2db a6e4bae 291b2db a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 291b2db a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 291b2db 4721ef4 291b2db 4721ef4 291b2db 4721ef4 291b2db 4721ef4 a6e4bae 4721ef4 291b2db 4721ef4 a6e4bae 4721ef4 a6e4bae 4721ef4 a6e4bae 291b2db a6e4bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
"""
EASI Severity Prediction REST API with Batch Processing
========================================================
FastAPI-based REST API for predicting EASI scores from dermatological images.
Now supports both single and batch image processing!
New Features:
- POST /predict/batch - Process multiple images in one request
- Configurable max batch size and timeout
- Parallel processing for faster batch predictions
Endpoints:
- POST /predict - Upload single image and get EASI predictions
- POST /predict/batch - Upload multiple images (up to 10 at once)
- GET /health - Health check endpoint
- GET /conditions - Get list of available conditions
- GET /docs - Interactive API documentation
Installation:
pip install fastapi uvicorn python-multipart pillow tensorflow numpy pandas huggingface-hub
Run locally:
uvicorn api:app --host 0.0.0.0 --port 8000 --reload
"""
import os
import warnings
import logging
from typing import List, Dict, Any, Optional
from io import BytesIO
from pathlib import Path
import asyncio
from concurrent.futures import ThreadPoolExecutor
# Suppress warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['MLIR_CRASH_REPRODUCER_DIRECTORY'] = ''
warnings.filterwarnings('ignore')
logging.getLogger('absl').setLevel(logging.ERROR)
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from fastapi import FastAPI, File, UploadFile, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
import numpy as np
from PIL import Image
import pickle
import pandas as pd
from huggingface_hub import hf_hub_download
# Configuration
MAX_BATCH_SIZE = 10 # Maximum images per batch request
BATCH_TIMEOUT = 300 # Timeout in seconds for batch processing
HF_REPO_ID = "google/derm-foundation"
DERM_FOUNDATION_PATH = "./derm_foundation/"
EASI_MODEL_PATH = './trained_model/easi_severity_model_derm_foundation_individual.pkl'
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
# Initialize FastAPI app
app = FastAPI(
title="EASI Severity Prediction API",
description="REST API for predicting EASI scores from skin images. Supports single and batch processing.",
version="2.1.0",
docs_url="/docs",
redoc_url="/redoc"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Thread pool for parallel processing
executor = ThreadPoolExecutor(max_workers=4)
# Response Models
class ConditionPrediction(BaseModel):
condition: str
probability: float = Field(..., ge=0, le=1)
confidence: float = Field(..., ge=0)
weight: float = Field(..., ge=0)
easi_category: Optional[str] = None
easi_contribution: int = Field(..., ge=0, le=3)
class EASIComponent(BaseModel):
name: str
score: int = Field(..., ge=0, le=3)
contributing_conditions: List[Dict[str, Any]]
class PredictionResponse(BaseModel):
success: bool
total_easi_score: int = Field(..., ge=0, le=12)
severity_interpretation: str
easi_components: Dict[str, EASIComponent]
predicted_conditions: List[ConditionPrediction]
summary_statistics: Dict[str, float]
image_info: Dict[str, Any]
class BatchPredictionResponse(BaseModel):
success: bool
total_images_processed: int
successful_predictions: int
failed_predictions: int
results: List[Optional[PredictionResponse]]
errors: List[Optional[str]]
processing_time_seconds: float
class HealthResponse(BaseModel):
status: str
models_loaded: Dict[str, bool]
available_conditions: int
hf_token_configured: bool
deployment_platform: str
batch_processing_enabled: bool
max_batch_size: int
space_info: Optional[Dict[str, str]] = None
class ErrorResponse(BaseModel):
success: bool = False
error: str
detail: Optional[str] = None
# Model wrapper class
class DermFoundationNeuralNetwork:
def __init__(self):
self.model = None
self.mlb = None
self.embedding_scaler = None
self.confidence_scaler = None
self.weighted_scaler = None
def load_model(self, filepath):
try:
with open(filepath, 'rb') as f:
model_data = pickle.load(f)
self.mlb = model_data['mlb']
self.embedding_scaler = model_data['embedding_scaler']
self.confidence_scaler = model_data['confidence_scaler']
self.weighted_scaler = model_data['weighted_scaler']
keras_model_path = model_data['keras_model_path']
if not os.path.exists(keras_model_path):
print(f"Original keras path not found: {keras_model_path}")
pickle_dir = os.path.dirname(os.path.abspath(filepath))
normalized_path = keras_model_path.replace('\\', '/')
keras_filename = normalized_path.split('/')[-1]
print(f"Extracted filename: {keras_filename}")
alternative_path = os.path.join(pickle_dir, keras_filename)
print(f"Trying alternative path: {alternative_path}")
if os.path.exists(alternative_path):
keras_model_path = alternative_path
print(f"β Found keras model at: {keras_model_path}")
else:
print(f"β Keras model not found at alternative path either")
return False
else:
print(f"β Found keras model at original path: {keras_model_path}")
self.model = tf.keras.models.load_model(keras_model_path)
print(f"β Keras model loaded successfully")
return True
except Exception as e:
print(f"Error loading model: {e}")
import traceback
traceback.print_exc()
return False
def predict(self, embedding):
if self.model is None:
return None
if len(embedding.shape) == 1:
embedding = embedding.reshape(1, -1)
embedding_scaled = self.embedding_scaler.transform(embedding)
predictions = self.model.predict(embedding_scaled, verbose=0)
condition_probs = predictions['conditions'][0]
individual_confidences = predictions['individual_confidences'][0]
individual_weights = predictions['individual_weights'][0]
condition_threshold = 0.3
predicted_condition_indices = np.where(condition_probs > condition_threshold)[0]
predicted_conditions = []
predicted_confidences = []
predicted_weights_dict = {}
for idx in predicted_condition_indices:
condition_name = self.mlb.classes_[idx]
condition_prob = float(condition_probs[idx])
if individual_confidences[idx] > 0:
confidence_orig = self.confidence_scaler.inverse_transform([[individual_confidences[idx]]])[0, 0]
else:
confidence_orig = 0.0
if individual_weights[idx] > 0:
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[idx]]])[0, 0]
else:
weight_orig = 0.0
predicted_conditions.append(condition_name)
predicted_confidences.append(max(0, confidence_orig))
predicted_weights_dict[condition_name] = max(0, weight_orig)
all_condition_probs = {}
all_confidences = {}
all_weights = {}
for i, class_name in enumerate(self.mlb.classes_):
all_condition_probs[class_name] = float(condition_probs[i])
if individual_confidences[i] > 0:
conf_orig = self.confidence_scaler.inverse_transform([[individual_confidences[i]]])[0, 0]
all_confidences[class_name] = max(0, conf_orig)
else:
all_confidences[class_name] = 0.0
if individual_weights[i] > 0:
weight_orig = self.weighted_scaler.inverse_transform([[individual_weights[i]]])[0, 0]
all_weights[class_name] = max(0, weight_orig)
else:
all_weights[class_name] = 0.0
return {
'dermatologist_skin_condition_on_label_name': predicted_conditions,
'dermatologist_skin_condition_confidence': predicted_confidences,
'weighted_skin_condition_label': predicted_weights_dict,
'all_condition_probabilities': all_condition_probs,
'all_individual_confidences': all_confidences,
'all_individual_weights': all_weights,
'condition_threshold': condition_threshold
}
# Helper function to download from Hugging Face
def download_derm_foundation_from_hf(output_dir):
"""Download Derm Foundation model from Hugging Face Hub"""
try:
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
print("=" * 80)
print("DOWNLOADING DERM FOUNDATION MODEL FROM HUGGING FACE")
print("=" * 80)
if hf_token:
print(f"β HF Token found (length: {len(hf_token)})")
else:
print("β No HF Token found - attempting anonymous download")
os.makedirs(output_dir, exist_ok=True)
files_to_download = [
"saved_model.pb",
"variables/variables.data-00000-of-00001",
"variables/variables.index"
]
for file_path in files_to_download:
print(f"\nπ₯ Downloading: {file_path}")
try:
downloaded_path = hf_hub_download(
repo_id=HF_REPO_ID,
filename=file_path,
token=hf_token,
local_dir=output_dir,
local_dir_use_symlinks=False,
resume_download=True
)
if os.path.exists(downloaded_path):
file_size_mb = os.path.getsize(downloaded_path) / (1024 * 1024)
print(f"β Downloaded successfully ({file_size_mb:.2f} MB)")
else:
print(f"β File not found after download: {downloaded_path}")
return False
except Exception as download_error:
print(f"β Failed to download {file_path}")
print(f" Error: {str(download_error)}")
raise
print("\n" + "=" * 80)
print("β DERM FOUNDATION MODEL DOWNLOADED SUCCESSFULLY")
print("=" * 80)
return True
except Exception as e:
print("\n" + "=" * 80)
print("β ERROR DOWNLOADING MODEL")
print("=" * 80)
print(f"Error: {str(e)}")
import traceback
traceback.print_exc()
return False
# EASI calculation functions
def calculate_easi_scores(predictions):
easi_categories = {
'erythema': {
'name': 'Erythema (Redness)',
'conditions': [
'Post-Inflammatory hyperpigmentation', 'Erythema ab igne', 'Erythema annulare centrifugum',
'Erythema elevatum diutinum', 'Erythema gyratum repens', 'Erythema multiforme',
'Erythema nodosum', 'Flagellate erythema', 'Annular erythema', 'Drug Rash',
'Allergic Contact Dermatitis', 'Irritant Contact Dermatitis', 'Contact dermatitis',
'Acute dermatitis', 'Chronic dermatitis', 'Acute and chronic dermatitis',
'Sunburn', 'Photodermatitis', 'Phytophotodermatitis', 'Rosacea',
'Seborrheic Dermatitis', 'Stasis Dermatitis', 'Perioral Dermatitis',
'Burn erythema of abdominal wall', 'Burn erythema of back of hand',
'Burn erythema of lower leg', 'Cellulitis', 'Infection of skin',
'Viral Exanthem', 'Infected eczema', 'Crusted eczematous dermatitis',
'Inflammatory dermatosis', 'Vasculitis of the skin', 'Leukocytoclastic Vasculitis',
'Cutaneous lupus', 'CD - Contact dermatitis', 'Acute dermatitis, NOS',
'Herpes Simplex', 'Hypersensitivity', 'Impetigo', 'Pigmented purpuric eruption',
'Pityriasis rosea', 'Tinea', 'Tinea Versicolor'
]
},
'induration': {
'name': 'Induration/Papulation (Swelling/Bumps)',
'conditions': [
'Prurigo nodularis', 'Urticaria', 'Granuloma annulare', 'Morphea',
'Scleroderma', 'Lichen Simplex Chronicus', 'Lichen planus', 'lichenoid eruption',
'Lichen nitidus', 'Lichen spinulosus', 'Lichen striatus', 'Keratosis pilaris',
'Molluscum Contagiosum', 'Verruca vulgaris', 'Folliculitis', 'Acne',
'Hidradenitis', 'Nodular vasculitis', 'Sweet syndrome', 'Necrobiosis lipoidica',
'Basal Cell Carcinoma', 'SCC', 'SCCIS', 'SK', 'ISK',
'Cutaneous T Cell Lymphoma', 'Skin cancer', 'Adnexal neoplasm',
'Insect Bite', 'Milia', 'Miliaria', 'Xanthoma', 'Psoriasis',
'Lichen planus/lichenoid eruption'
]
},
'excoriation': {
'name': 'Excoriation (Scratching Damage)',
'conditions': [
'Inflicted skin lesions', 'Scabies', 'Abrasion', 'Abrasion of wrist',
'Superficial wound of body region', 'Scrape', 'Animal bite - wound',
'Pruritic dermatitis', 'Prurigo', 'Atopic dermatitis', 'Scab'
]
},
'lichenification': {
'name': 'Lichenification (Skin Thickening)',
'conditions': [
'Lichenified eczematous dermatitis', 'Acanthosis nigricans',
'Hyperkeratosis of skin', 'HK - Hyperkeratosis', 'Keratoderma',
'Ichthyosis', 'Ichthyosiform dermatosis', 'Chronic eczema',
'Psoriasis', 'Xerosis'
]
}
}
def probability_to_score(prob):
if prob < 0.171:
return 0
elif prob < 0.238:
return 1
elif prob < 0.421:
return 2
elif prob < 0.614:
return 3
else:
return 3
easi_results = {}
all_condition_probs = predictions['all_condition_probabilities']
for component, category_info in easi_categories.items():
category_conditions = []
for condition_name, probability in all_condition_probs.items():
if condition_name.lower() == 'eczema':
continue
if condition_name in category_info['conditions']:
category_conditions.append({
'condition': condition_name,
'probability': probability,
'individual_score': probability_to_score(probability)
})
category_conditions = [c for c in category_conditions if c['individual_score'] > 0]
category_conditions.sort(key=lambda x: x['probability'], reverse=True)
component_score = sum(c['individual_score'] for c in category_conditions)
component_score = min(component_score, 3)
easi_results[component] = {
'name': category_info['name'],
'score': component_score,
'contributing_conditions': category_conditions
}
total_easi = sum(result['score'] for result in easi_results.values())
return easi_results, total_easi
def get_severity_interpretation(total_easi):
if total_easi == 0:
return "No significant EASI features detected"
elif total_easi <= 3:
return "Mild EASI severity"
elif total_easi <= 6:
return "Moderate EASI severity"
elif total_easi <= 9:
return "Severe EASI severity"
else:
return "Very Severe EASI severity"
# Image processing functions
def smart_crop_to_square(image):
width, height = image.size
if width == height:
return image
size = min(width, height)
left = (width - size) // 2
top = (height - size) // 2
right = left + size
bottom = top + size
return image.crop((left, top, right, bottom))
def generate_derm_foundation_embedding(model, image):
try:
if image.mode != 'RGB':
image = image.convert('RGB')
buf = BytesIO()
image.save(buf, format='JPEG')
image_bytes = buf.getvalue()
input_tensor = tf.train.Example(features=tf.train.Features(
feature={'image/encoded': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[image_bytes]))
})).SerializeToString()
infer = model.signatures["serving_default"]
output = infer(inputs=tf.constant([input_tensor]))
if 'embedding' in output:
embedding_vector = output['embedding'].numpy().flatten()
else:
key = list(output.keys())[0]
embedding_vector = output[key].numpy().flatten()
return embedding_vector
except Exception as e:
raise Exception(f"Error generating embedding: {str(e)}")
def process_single_image_sync(image_bytes: bytes, filename: str) -> Dict[str, Any]:
"""
Synchronous function to process a single image.
Returns dict with 'success', 'result', and 'error' keys.
"""
try:
# Read and process image
original_image = Image.open(BytesIO(image_bytes)).convert('RGB')
original_size = original_image.size
# Process to 448x448
cropped_img = smart_crop_to_square(original_image)
processed_img = cropped_img.resize((448, 448), Image.Resampling.LANCZOS)
# Generate embedding
embedding = generate_derm_foundation_embedding(derm_model, processed_img)
# Make prediction
predictions = easi_model.predict(embedding)
if predictions is None:
return {
'success': False,
'result': None,
'error': "Prediction failed - model returned None"
}
# Calculate EASI scores
easi_results, total_easi = calculate_easi_scores(predictions)
severity = get_severity_interpretation(total_easi)
# Format predicted conditions
predicted_conditions = []
for i, condition in enumerate(predictions['dermatologist_skin_condition_on_label_name']):
prob = predictions['all_condition_probabilities'][condition]
conf = predictions['dermatologist_skin_condition_confidence'][i]
weight = predictions['weighted_skin_condition_label'][condition]
# Find EASI category
easi_category = None
easi_contribution = 0
for cat_key, cat_info in easi_results.items():
for contrib in cat_info['contributing_conditions']:
if contrib['condition'] == condition:
easi_category = cat_info['name']
easi_contribution = contrib['individual_score']
break
predicted_conditions.append(ConditionPrediction(
condition=condition,
probability=float(prob),
confidence=float(conf),
weight=float(weight),
easi_category=easi_category,
easi_contribution=easi_contribution
))
# Summary statistics
summary_stats = {
"total_conditions": len(predicted_conditions),
"average_confidence": float(np.mean(predictions['dermatologist_skin_condition_confidence'])) if predicted_conditions else 0.0,
"average_weight": float(np.mean(list(predictions['weighted_skin_condition_label'].values()))) if predicted_conditions else 0.0,
"total_weight": float(sum(predictions['weighted_skin_condition_label'].values()))
}
# Format EASI components
easi_components_formatted = {
component: EASIComponent(
name=result['name'],
score=result['score'],
contributing_conditions=result['contributing_conditions']
)
for component, result in easi_results.items()
}
result = PredictionResponse(
success=True,
total_easi_score=total_easi,
severity_interpretation=severity,
easi_components=easi_components_formatted,
predicted_conditions=predicted_conditions,
summary_statistics=summary_stats,
image_info={
"original_size": f"{original_size[0]}x{original_size[1]}",
"processed_size": "448x448",
"filename": filename
}
)
return {
'success': True,
'result': result,
'error': None
}
except Exception as e:
import traceback
error_traceback = traceback.format_exc()
print(f"Error processing image {filename}: {str(e)}")
print(error_traceback)
return {
'success': False,
'result': None,
'error': str(e)
}
# Global model instances
derm_model = None
easi_model = None
deployment_platform = "huggingface_spaces"
@app.on_event("startup")
async def load_models():
"""Load models on startup"""
global derm_model, easi_model, deployment_platform
import gc
gc.collect()
print("\n" + "=" * 80)
print("π STARTING EASI API WITH BATCH PROCESSING")
print("=" * 80)
# Detect if running on HF Spaces
space_id = os.environ.get("SPACE_ID")
space_author = os.environ.get("SPACE_AUTHOR_NAME")
space_host = os.environ.get("SPACE_HOST")
if space_id:
deployment_platform = f"huggingface_spaces ({space_id})"
print(f"π Space: {space_id}")
print(f"π€ Author: {space_author}")
print(f"π Host: {space_host}")
else:
deployment_platform = "local"
print("π Running locally")
print(f"π’ Max batch size: {MAX_BATCH_SIZE}")
print(f"β±οΈ Batch timeout: {BATCH_TIMEOUT}s")
print("=" * 80)
# Check HF Token
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
if hf_token:
print(f"β HF Token configured (length: {len(hf_token)})")
else:
print("β No HF Token found")
print("=" * 80)
# Check if Derm Foundation model exists locally
model_files_exist = (
os.path.exists(os.path.join(DERM_FOUNDATION_PATH, "saved_model.pb")) and
os.path.exists(os.path.join(DERM_FOUNDATION_PATH, "variables"))
)
if not model_files_exist:
print("\nπ₯ Derm Foundation model not found - downloading from Hugging Face...")
success = download_derm_foundation_from_hf(DERM_FOUNDATION_PATH)
if not success:
print("\nβ CRITICAL: Failed to download Derm Foundation model!")
return
else:
print("\nβ Derm Foundation model found locally (using cache)")
# Load Derm Foundation model
print("\n" + "=" * 80)
print("π¦ LOADING DERM FOUNDATION MODEL")
print("=" * 80)
try:
print(f"Loading from: {DERM_FOUNDATION_PATH}")
gc.collect()
derm_model = tf.saved_model.load(DERM_FOUNDATION_PATH)
print("β Derm Foundation model loaded successfully!")
gc.collect()
except Exception as e:
print(f"β Failed to load Derm Foundation model: {str(e)}")
import traceback
traceback.print_exc()
# Load EASI model
print("\n" + "=" * 80)
print("π¦ LOADING EASI PREDICTION MODEL")
print("=" * 80)
if os.path.exists(EASI_MODEL_PATH):
easi_model = DermFoundationNeuralNetwork()
success = easi_model.load_model(EASI_MODEL_PATH)
if success:
print(f"β EASI model loaded from: {EASI_MODEL_PATH}")
print(f" Available conditions: {len(easi_model.mlb.classes_)}")
else:
print(f"β Failed to load EASI model")
easi_model = None
else:
print(f"β EASI model not found at: {EASI_MODEL_PATH}")
# Final status
print("\n" + "=" * 80)
print("π STARTUP COMPLETE")
print("=" * 80)
print(f"Derm Foundation Model: {'β Loaded' if derm_model else 'β Failed'}")
print(f"EASI Prediction Model: {'β Loaded' if easi_model else 'β Failed'}")
print(f"Batch Processing: β Enabled (max {MAX_BATCH_SIZE} images)")
print(f"Platform: {deployment_platform}")
print("=" * 80)
if derm_model and easi_model:
print("β
All systems ready! API is operational.")
else:
print("β οΈ WARNING: Some models failed to load.")
print("=" * 80 + "\n")
# API Endpoints
@app.get("/")
async def root():
"""Root endpoint with API information"""
space_info = {
"space_id": os.environ.get("SPACE_ID", "local"),
"space_author": os.environ.get("SPACE_AUTHOR_NAME", "unknown"),
"space_host": os.environ.get("SPACE_HOST", "localhost")
}
return {
"message": "EASI Severity Prediction API with Batch Processing",
"version": "2.1.0",
"platform": deployment_platform,
"space_info": space_info,
"status": "operational" if (derm_model and easi_model) else "degraded",
"batch_processing": {
"enabled": True,
"max_batch_size": MAX_BATCH_SIZE,
"timeout_seconds": BATCH_TIMEOUT
},
"endpoints": {
"health": "/health",
"predict": "/predict (single image)",
"predict_batch": "/predict/batch (multiple images)",
"conditions": "/conditions",
"docs": "/docs",
"redoc": "/redoc"
},
"documentation": "Visit /docs for interactive API documentation"
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
space_info = None
if os.environ.get("SPACE_ID"):
space_info = {
"space_id": os.environ.get("SPACE_ID"),
"space_author": os.environ.get("SPACE_AUTHOR_NAME"),
"space_host": os.environ.get("SPACE_HOST")
}
return {
"status": "healthy" if (derm_model is not None and easi_model is not None) else "degraded",
"models_loaded": {
"derm_foundation": derm_model is not None,
"easi_model": easi_model is not None
},
"available_conditions": len(easi_model.mlb.classes_) if easi_model else 0,
"hf_token_configured": (os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")) is not None,
"deployment_platform": deployment_platform,
"batch_processing_enabled": True,
"max_batch_size": MAX_BATCH_SIZE,
"space_info": space_info
}
@app.get("/conditions", response_model=Dict[str, List[str]])
async def get_conditions():
"""Get list of available conditions"""
if easi_model is None:
raise HTTPException(
status_code=503,
detail="EASI model not loaded. Check server logs or /health endpoint."
)
return {
"conditions": easi_model.mlb.classes_.tolist(),
"total_count": len(easi_model.mlb.classes_)
}
@app.post("/predict", response_model=PredictionResponse)
async def predict_easi(
file: UploadFile = File(..., description="Skin image file (JPG, JPEG, PNG)")
):
"""
Predict EASI scores from uploaded skin image.
- **file**: Image file (JPG, JPEG, PNG)
- Returns: EASI scores, component breakdown, and condition predictions
"""
# Validate models loaded
if derm_model is None or easi_model is None:
error_detail = []
if derm_model is None:
error_detail.append("Derm Foundation model not loaded")
if easi_model is None:
error_detail.append("EASI model not loaded")
raise HTTPException(
status_code=503,
detail=f"Models not available: {', '.join(error_detail)}. Check /health endpoint for details."
)
# Validate file type
if not file.content_type or not file.content_type.startswith('image/'):
raise HTTPException(
status_code=400,
detail="File must be an image (JPG, JPEG, PNG). Received: " + str(file.content_type)
)
try:
# Read image bytes
image_bytes = await file.read()
# Process image synchronously
result = process_single_image_sync(image_bytes, file.filename)
if not result['success']:
raise HTTPException(
status_code=500,
detail=f"Error processing image: {result['error']}"
)
return result['result']
except HTTPException:
raise
except Exception as e:
import traceback
error_traceback = traceback.format_exc()
print(f"Error processing image: {str(e)}")
print(error_traceback)
raise HTTPException(
status_code=500,
detail=f"Error processing image: {str(e)}"
)
@app.post("/predict/batch", response_model=BatchPredictionResponse)
async def predict_easi_batch(
files: List[UploadFile] = File(..., description=f"Multiple skin image files (max {MAX_BATCH_SIZE})")
):
"""
Predict EASI scores from multiple uploaded skin images in parallel.
- **files**: List of image files (JPG, JPEG, PNG) - max 10 images per request
- Returns: Batch results with individual predictions and errors
**Example Usage (Python):**
```python
import requests
files = [
('files', open('image1.jpg', 'rb')),
('files', open('image2.jpg', 'rb')),
('files', open('image3.jpg', 'rb'))
]
response = requests.post('http://localhost:8000/predict/batch', files=files)
results = response.json()
```
**Example Usage (cURL):**
```bash
curl -X POST "http://localhost:8000/predict/batch" \
-F "[email protected]" \
-F "[email protected]" \
-F "[email protected]"
```
"""
import time
start_time = time.time()
# Validate models loaded
if derm_model is None or easi_model is None:
error_detail = []
if derm_model is None:
error_detail.append("Derm Foundation model not loaded")
if easi_model is None:
error_detail.append("EASI model not loaded")
raise HTTPException(
status_code=503,
detail=f"Models not available: {', '.join(error_detail)}. Check /health endpoint."
)
# Validate batch size
num_files = len(files)
if num_files == 0:
raise HTTPException(
status_code=400,
detail="No files provided. Please upload at least one image."
)
if num_files > MAX_BATCH_SIZE:
raise HTTPException(
status_code=400,
detail=f"Too many files. Maximum batch size is {MAX_BATCH_SIZE}, received {num_files}."
)
print(f"\nπ Processing batch of {num_files} images...")
# Validate file types and read all files
image_data = []
for idx, file in enumerate(files):
if not file.content_type or not file.content_type.startswith('image/'):
raise HTTPException(
status_code=400,
detail=f"File {idx+1} ('{file.filename}') is not an image. Received: {file.content_type}"
)
try:
image_bytes = await file.read()
image_data.append({
'bytes': image_bytes,
'filename': file.filename,
'index': idx
})
except Exception as e:
raise HTTPException(
status_code=400,
detail=f"Error reading file {idx+1} ('{file.filename}'): {str(e)}"
)
# Process images in parallel using thread pool
try:
loop = asyncio.get_event_loop()
# Create tasks for parallel processing
tasks = [
loop.run_in_executor(
executor,
process_single_image_sync,
img['bytes'],
img['filename']
)
for img in image_data
]
# Wait for all tasks with timeout
results = await asyncio.wait_for(
asyncio.gather(*tasks, return_exceptions=True),
timeout=BATCH_TIMEOUT
)
except asyncio.TimeoutError:
raise HTTPException(
status_code=504,
detail=f"Batch processing timeout after {BATCH_TIMEOUT} seconds. Try reducing batch size."
)
except Exception as e:
import traceback
traceback.print_exc()
raise HTTPException(
status_code=500,
detail=f"Error during batch processing: {str(e)}"
)
# Collect results and errors
prediction_results = []
error_messages = []
successful_count = 0
failed_count = 0
for idx, result in enumerate(results):
if isinstance(result, Exception):
# Handle exception during processing
prediction_results.append(None)
error_messages.append(f"Exception: {str(result)}")
failed_count += 1
print(f" β Image {idx+1} failed: {str(result)}")
elif result['success']:
prediction_results.append(result['result'])
error_messages.append(None)
successful_count += 1
print(f" β Image {idx+1} processed successfully")
else:
prediction_results.append(None)
error_messages.append(result['error'])
failed_count += 1
print(f" β Image {idx+1} failed: {result['error']}")
processing_time = time.time() - start_time
print(f"β
Batch complete: {successful_count} successful, {failed_count} failed in {processing_time:.2f}s\n")
return BatchPredictionResponse(
success=True,
total_images_processed=num_files,
successful_predictions=successful_count,
failed_predictions=failed_count,
results=prediction_results,
errors=error_messages,
processing_time_seconds=round(processing_time, 2)
)
@app.exception_handler(HTTPException)
async def http_exception_handler(request, exc):
"""Custom HTTP exception handler"""
return JSONResponse(
status_code=exc.status_code,
content=ErrorResponse(
error=exc.detail,
detail=str(exc)
).dict()
)
@app.exception_handler(Exception)
async def general_exception_handler(request, exc):
"""General exception handler for unexpected errors"""
import traceback
error_traceback = traceback.format_exc()
print(f"Unexpected error: {str(exc)}")
print(error_traceback)
return JSONResponse(
status_code=500,
content=ErrorResponse(
error="Internal server error",
detail=str(exc)
).dict()
)
if __name__ == "__main__":
import uvicorn
print("=" * 80)
print("π Starting EASI API Server with Batch Processing")
print("=" * 80)
print(f"Max batch size: {MAX_BATCH_SIZE} images")
print(f"Batch timeout: {BATCH_TIMEOUT} seconds")
print("=" * 80)
print("Access the API at: http://localhost:8000")
print("Interactive docs: http://localhost:8000/docs")
print("=" * 80)
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
) |