Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from transformers import TextStreamer | |
| from peft import PeftModel | |
| from unsloth import FastLanguageModel | |
| # Load your model and tokenizer | |
| model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name | |
| auth_token = os.getenv("HF_TOKEN") # Now this should work | |
| # print("Auth token:", auth_token) # To verify it's loaded | |
| # Loading the base model and applying the local adapter. | |
| max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
| dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
| load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
| # 4bit pre quantized models we support for 4x faster downloading + no OOMs. | |
| fourbit_models = [ | |
| "unsloth/mistral-7b-bnb-4bit", | |
| "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", | |
| "unsloth/llama-2-7b-bnb-4bit", | |
| "unsloth/llama-2-13b-bnb-4bit", | |
| "unsloth/codellama-34b-bnb-4bit", | |
| "unsloth/tinyllama-bnb-4bit", | |
| "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster! | |
| "unsloth/gemma-2b-bnb-4bit", | |
| ] # More models at https://huggingface.co/unsloth | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B | |
| max_seq_length = max_seq_length, | |
| dtype = dtype, | |
| load_in_4bit = load_in_4bit, | |
| token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf | |
| ) | |
| model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token) | |
| FastLanguageModel.for_inference(model) | |
| # tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) | |
| # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token) | |
| text_streamer = TextStreamer(tokenizer, skip_prompt = True) | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| def respond(message, history): | |
| messages = [] | |
| for user_msg, assistant_msg in history: | |
| messages.append({"role": "user", "content": user_msg}) | |
| messages.append({"role": "assistant", "content": assistant_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| outputs = model.generate( | |
| input_ids=inputs, | |
| max_new_tokens=512, | |
| use_cache=True, | |
| temperature=0.7, | |
| top_p=0.95, | |
| ) | |
| response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True) | |
| return response | |
| demo = gr.ChatInterface( | |
| respond, | |
| title="Renj Chatbot", | |
| description="Ask me anything about my portfolio and projects." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share = True) | |