Commit
·
d32067c
1
Parent(s):
bf8026d
Initial upload of Streamlit app for keyword similarity
Browse files- app.py +71 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
import openai
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# App title
|
| 8 |
+
st.title("Keyword Cosine Similarity Tool")
|
| 9 |
+
|
| 10 |
+
# Inputs
|
| 11 |
+
st.header("Input Parameters")
|
| 12 |
+
primary_keyword = st.text_input("Primary Keyword", placeholder="Enter your primary keyword")
|
| 13 |
+
keywords = st.text_area("Keywords to Compare", placeholder="Enter keywords separated by new lines")
|
| 14 |
+
model_name = st.selectbox("Select Embedding Model", ["sentence-transformers/LaBSE", "all-MiniLM-L6-v2", "OpenAI Embeddings"])
|
| 15 |
+
openai_api_key = st.text_input("OpenAI API Key (optional)", type="password")
|
| 16 |
+
|
| 17 |
+
# Process Button
|
| 18 |
+
if st.button("Calculate Similarities"):
|
| 19 |
+
if not primary_keyword or not keywords:
|
| 20 |
+
st.error("Please provide both the primary keyword and keywords to compare.")
|
| 21 |
+
else:
|
| 22 |
+
keyword_list = [kw.strip() for kw in keywords.split("\n") if kw.strip()]
|
| 23 |
+
|
| 24 |
+
if model_name.startswith("sentence-transformers"):
|
| 25 |
+
# Load model
|
| 26 |
+
st.info(f"Loading model: {model_name}")
|
| 27 |
+
model = SentenceTransformer(model_name)
|
| 28 |
+
|
| 29 |
+
# Generate embeddings
|
| 30 |
+
st.info("Generating embeddings...")
|
| 31 |
+
primary_embedding = model.encode(primary_keyword, convert_to_tensor=True)
|
| 32 |
+
keyword_embeddings = model.encode(keyword_list, convert_to_tensor=True)
|
| 33 |
+
|
| 34 |
+
elif model_name == "OpenAI Embeddings":
|
| 35 |
+
if not openai_api_key:
|
| 36 |
+
st.error("Please provide your OpenAI API key for this model.")
|
| 37 |
+
else:
|
| 38 |
+
openai.api_key = openai_api_key
|
| 39 |
+
st.info("Generating OpenAI embeddings...")
|
| 40 |
+
|
| 41 |
+
def get_openai_embedding(text):
|
| 42 |
+
response = openai.Embedding.create(
|
| 43 |
+
model="text-embedding-ada-002",
|
| 44 |
+
input=text
|
| 45 |
+
)
|
| 46 |
+
return np.array(response['data'][0]['embedding'])
|
| 47 |
+
|
| 48 |
+
primary_embedding = get_openai_embedding(primary_keyword)
|
| 49 |
+
keyword_embeddings = np.array([get_openai_embedding(kw) for kw in keyword_list])
|
| 50 |
+
|
| 51 |
+
else:
|
| 52 |
+
st.error("Invalid model selection.")
|
| 53 |
+
st.stop()
|
| 54 |
+
|
| 55 |
+
# Calculate cosine similarities
|
| 56 |
+
st.info("Calculating cosine similarities...")
|
| 57 |
+
similarities = cosine_similarity([primary_embedding], keyword_embeddings)[0]
|
| 58 |
+
|
| 59 |
+
# Display results
|
| 60 |
+
st.header("Results")
|
| 61 |
+
results = [{"Keyword": kw, "Cosine Similarity": sim} for kw, sim in zip(keyword_list, similarities)]
|
| 62 |
+
st.table(results)
|
| 63 |
+
|
| 64 |
+
# Debugging/Intermediate Data
|
| 65 |
+
st.header("Debugging Info")
|
| 66 |
+
st.write("Primary Embedding:", primary_embedding)
|
| 67 |
+
st.write("Keyword Embeddings:", keyword_embeddings)
|
| 68 |
+
|
| 69 |
+
# Footer
|
| 70 |
+
st.markdown("---")
|
| 71 |
+
st.markdown("Created by [Your Name](https://huggingface.co/yourprofile)")
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
sentence-transformers
|
| 3 |
+
scikit-learn
|
| 4 |
+
openai
|
| 5 |
+
numpy
|