Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,100 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
-
|
|
|
|
| 5 |
@app.get("/")
|
| 6 |
def greet_json():
|
| 7 |
return {"Hello": "World!"}
|
| 8 |
|
| 9 |
@app.get("/test")
|
| 10 |
def greet_json():
|
| 11 |
-
return {"Hello": "Redmind!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
+
client = chromadb.PersistentClient(path="./chroma_db")
|
| 5 |
+
collection = client.get_collection(name="knowledge_base")
|
| 6 |
@app.get("/")
|
| 7 |
def greet_json():
|
| 8 |
return {"Hello": "World!"}
|
| 9 |
|
| 10 |
@app.get("/test")
|
| 11 |
def greet_json():
|
| 12 |
+
return {"Hello": "Redmind!"}
|
| 13 |
+
|
| 14 |
+
@app.get("/search/")
|
| 15 |
+
def search(query: str):
|
| 16 |
+
query_embedding = get_text_embedding(query)
|
| 17 |
+
results = collection.query(
|
| 18 |
+
query_embeddings=[query_embedding],
|
| 19 |
+
n_results=5
|
| 20 |
+
)
|
| 21 |
+
return {"results": results["documents"]}
|
| 22 |
+
|
| 23 |
+
import fitz
|
| 24 |
+
|
| 25 |
+
def extract_text_from_pdf(pdf_path):
|
| 26 |
+
text = ""
|
| 27 |
+
doc = fitz.open(pdf_path)
|
| 28 |
+
for page in doc:
|
| 29 |
+
text += page.get_text() + "\n"
|
| 30 |
+
return text
|
| 31 |
+
|
| 32 |
+
from pptx import Presentation
|
| 33 |
+
|
| 34 |
+
def extract_text_from_pptx(pptx_path):
|
| 35 |
+
text = ""
|
| 36 |
+
prs = Presentation(pptx_path)
|
| 37 |
+
for slide in prs.slides:
|
| 38 |
+
for shape in slide.shapes:
|
| 39 |
+
if hasattr(shape, "text"):
|
| 40 |
+
text += shape.text + "\n"
|
| 41 |
+
return text
|
| 42 |
+
|
| 43 |
+
import os
|
| 44 |
+
|
| 45 |
+
def extract_images_from_pdf(pdf_path, output_folder):
|
| 46 |
+
doc = fitz.open(pdf_path)
|
| 47 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 48 |
+
for i, page in enumerate(doc):
|
| 49 |
+
for img_index, img in enumerate(page.get_images(full=True)):
|
| 50 |
+
xref = img[0]
|
| 51 |
+
image = doc.extract_image(xref)
|
| 52 |
+
img_bytes = image["image"]
|
| 53 |
+
img_ext = image["ext"]
|
| 54 |
+
with open(f"{output_folder}/image_{i}_{img_index}.{img_ext}", "wb") as f:
|
| 55 |
+
f.write(img_bytes)
|
| 56 |
+
|
| 57 |
+
def extract_images_from_pptx(pptx_path, output_folder):
|
| 58 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 59 |
+
prs = Presentation(pptx_path)
|
| 60 |
+
for i, slide in enumerate(prs.slides):
|
| 61 |
+
for shape in slide.shapes:
|
| 62 |
+
if shape.shape_type == 13: # Picture shape type
|
| 63 |
+
image = shape.image
|
| 64 |
+
img_bytes = image.blob
|
| 65 |
+
img_ext = image.ext
|
| 66 |
+
with open(f"{output_folder}/image_{i}.{img_ext}", "wb") as f:
|
| 67 |
+
f.write(img_bytes)
|
| 68 |
+
from sentence_transformers import SentenceTransformer
|
| 69 |
+
|
| 70 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 71 |
+
|
| 72 |
+
def get_text_embedding(text):
|
| 73 |
+
return model.encode(text).tolist()
|
| 74 |
+
from PIL import Image
|
| 75 |
+
import torch
|
| 76 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 77 |
+
|
| 78 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 79 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 80 |
+
|
| 81 |
+
def get_image_embedding(image_path):
|
| 82 |
+
image = Image.open(image_path)
|
| 83 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
embedding = clip_model.get_image_features(**inputs)
|
| 86 |
+
return embedding.squeeze().tolist()
|
| 87 |
+
import chromadb
|
| 88 |
+
|
| 89 |
+
client = chromadb.PersistentClient(path="./chroma_db")
|
| 90 |
+
collection = client.get_or_create_collection(name="knowledge_base")
|
| 91 |
+
|
| 92 |
+
def store_data(texts, images):
|
| 93 |
+
for i, text in enumerate(texts):
|
| 94 |
+
text_embedding = get_text_embedding(text)
|
| 95 |
+
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
| 96 |
+
|
| 97 |
+
for j, image in enumerate(images):
|
| 98 |
+
image_embedding = get_image_embedding(image)
|
| 99 |
+
collection.add(ids=[f"image_{j}"], embeddings=[image_embedding], documents=[image])
|
| 100 |
+
|