Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ from transformers import CLIPProcessor, CLIPModel
|
|
| 8 |
from PIL import Image
|
| 9 |
import chromadb
|
| 10 |
import numpy as np
|
| 11 |
-
from sklearn.decomposition import PCA
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
@@ -21,7 +20,7 @@ pdf_file = "Sutures and Suturing techniques.pdf"
|
|
| 21 |
pptx_file = "impalnt 1.pptx"
|
| 22 |
|
| 23 |
# Initialize Embedding Models
|
| 24 |
-
text_model = SentenceTransformer('
|
| 25 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 26 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 27 |
|
|
@@ -86,23 +85,17 @@ def extract_images_from_pptx(pptx_path):
|
|
| 86 |
print(f"Error extracting images from PPTX: {e}")
|
| 87 |
return []
|
| 88 |
|
| 89 |
-
# Convert Text to Embeddings
|
| 90 |
def get_text_embedding(text):
|
| 91 |
return text_model.encode(text).tolist()
|
| 92 |
|
| 93 |
-
# Extract Image Embeddings
|
| 94 |
def get_image_embedding(image_path):
|
| 95 |
try:
|
| 96 |
image = Image.open(image_path)
|
| 97 |
inputs = processor(images=image, return_tensors="pt")
|
| 98 |
with torch.no_grad():
|
| 99 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
| 100 |
-
|
| 101 |
-
# Ensure embedding is 384-dimensional
|
| 102 |
-
if len(image_embedding) != 384:
|
| 103 |
-
pca = PCA(n_components=384)
|
| 104 |
-
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
| 105 |
-
|
| 106 |
return image_embedding.tolist()
|
| 107 |
except Exception as e:
|
| 108 |
print(f"Error generating image embedding: {e}")
|
|
@@ -113,21 +106,12 @@ def store_data(texts, image_paths):
|
|
| 113 |
for i, text in enumerate(texts):
|
| 114 |
if text:
|
| 115 |
text_embedding = get_text_embedding(text)
|
| 116 |
-
|
| 117 |
-
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
# Apply PCA only if necessary
|
| 125 |
-
if all_embeddings.shape[1] != 384:
|
| 126 |
-
pca = PCA(n_components=384)
|
| 127 |
-
all_embeddings = pca.fit_transform(all_embeddings)
|
| 128 |
-
|
| 129 |
-
for j, img_path in enumerate(image_paths):
|
| 130 |
-
collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path])
|
| 131 |
|
| 132 |
print("Data stored successfully!")
|
| 133 |
|
|
@@ -148,7 +132,7 @@ def process_and_store(pdf_path=None, pptx_path=None):
|
|
| 148 |
|
| 149 |
# FastAPI Endpoints
|
| 150 |
@app.get("/")
|
| 151 |
-
def
|
| 152 |
# Run Data Processing
|
| 153 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
| 154 |
return {"Document store": "created!"}
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
import chromadb
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
|
|
|
| 20 |
pptx_file = "impalnt 1.pptx"
|
| 21 |
|
| 22 |
# Initialize Embedding Models
|
| 23 |
+
text_model = SentenceTransformer('paraphrase-MiniLM-L12-v2') # 512D embeddings
|
| 24 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 25 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 26 |
|
|
|
|
| 85 |
print(f"Error extracting images from PPTX: {e}")
|
| 86 |
return []
|
| 87 |
|
| 88 |
+
# Convert Text to Embeddings (512D)
|
| 89 |
def get_text_embedding(text):
|
| 90 |
return text_model.encode(text).tolist()
|
| 91 |
|
| 92 |
+
# Extract Image Embeddings (512D)
|
| 93 |
def get_image_embedding(image_path):
|
| 94 |
try:
|
| 95 |
image = Image.open(image_path)
|
| 96 |
inputs = processor(images=image, return_tensors="pt")
|
| 97 |
with torch.no_grad():
|
| 98 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
return image_embedding.tolist()
|
| 100 |
except Exception as e:
|
| 101 |
print(f"Error generating image embedding: {e}")
|
|
|
|
| 106 |
for i, text in enumerate(texts):
|
| 107 |
if text:
|
| 108 |
text_embedding = get_text_embedding(text)
|
| 109 |
+
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text])
|
|
|
|
| 110 |
|
| 111 |
+
for j, img_path in enumerate(image_paths):
|
| 112 |
+
img_embedding = get_image_embedding(img_path)
|
| 113 |
+
if img_embedding:
|
| 114 |
+
collection.add(ids=[f"image_{j}"], embeddings=[img_embedding], documents=[img_path])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
print("Data stored successfully!")
|
| 117 |
|
|
|
|
| 132 |
|
| 133 |
# FastAPI Endpoints
|
| 134 |
@app.get("/")
|
| 135 |
+
def greet_json():
|
| 136 |
# Run Data Processing
|
| 137 |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
| 138 |
return {"Document store": "created!"}
|