Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -89,14 +89,33 @@ def extract_images_from_pptx(pptx_path):
|
|
| 89 |
def get_text_embedding(text):
|
| 90 |
return text_model.encode(text).tolist()
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
### Step 6: Convert Images to Embeddings ###
|
| 94 |
def get_image_embedding(image_path):
|
|
|
|
|
|
|
|
|
|
| 95 |
image = Image.open(image_path)
|
| 96 |
-
inputs =
|
|
|
|
| 97 |
with torch.no_grad():
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
### Step 7: Store Data in ChromaDB ###
|
|
|
|
| 89 |
def get_text_embedding(text):
|
| 90 |
return text_model.encode(text).tolist()
|
| 91 |
|
| 92 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 93 |
+
import torch
|
| 94 |
+
import numpy as np
|
| 95 |
+
from sklearn.decomposition import PCA
|
| 96 |
+
|
| 97 |
+
# ✅ Load CLIP (512-dimensional output)
|
| 98 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 99 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 100 |
|
|
|
|
| 101 |
def get_image_embedding(image_path):
|
| 102 |
+
"""Extracts image embedding and reduces to 384 dimensions"""
|
| 103 |
+
from PIL import Image
|
| 104 |
+
|
| 105 |
image = Image.open(image_path)
|
| 106 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 107 |
+
|
| 108 |
with torch.no_grad():
|
| 109 |
+
image_embedding = model.get_image_features(**inputs) # Shape: (1, 512)
|
| 110 |
+
|
| 111 |
+
image_embedding = image_embedding.numpy().flatten() # Convert to NumPy (512,)
|
| 112 |
+
|
| 113 |
+
# ✅ Reduce to 384 dimensions using PCA
|
| 114 |
+
pca = PCA(n_components=384)
|
| 115 |
+
image_embedding_384 = pca.fit_transform(image_embedding.reshape(1, -1))
|
| 116 |
+
|
| 117 |
+
return image_embedding_384.flatten().tolist()
|
| 118 |
+
|
| 119 |
|
| 120 |
|
| 121 |
### Step 7: Store Data in ChromaDB ###
|