Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -90,22 +90,28 @@ def extract_images_from_pptx(pptx_path):
|
|
| 90 |
def get_text_embedding(text):
|
| 91 |
return text_model.encode(text).tolist()
|
| 92 |
|
| 93 |
-
#
|
|
|
|
|
|
|
| 94 |
def get_image_embedding(image_path):
|
| 95 |
try:
|
|
|
|
| 96 |
image = Image.open(image_path)
|
| 97 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
|
|
| 98 |
with torch.no_grad():
|
| 99 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
| 100 |
|
| 101 |
-
#
|
| 102 |
if len(image_embedding) != 384:
|
| 103 |
-
|
| 104 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
| 105 |
|
| 106 |
return image_embedding.tolist()
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
-
print(f"Error generating image embedding: {e}")
|
| 109 |
return None
|
| 110 |
|
| 111 |
# Store Data in ChromaDB
|
|
|
|
| 90 |
def get_text_embedding(text):
|
| 91 |
return text_model.encode(text).tolist()
|
| 92 |
|
| 93 |
+
# Preload PCA instance globally (to maintain consistency across calls)
|
| 94 |
+
pca = PCA(n_components=384)
|
| 95 |
+
|
| 96 |
def get_image_embedding(image_path):
|
| 97 |
try:
|
| 98 |
+
# Load the image
|
| 99 |
image = Image.open(image_path)
|
| 100 |
inputs = processor(images=image, return_tensors="pt")
|
| 101 |
+
|
| 102 |
+
# Extract image embeddings
|
| 103 |
with torch.no_grad():
|
| 104 |
image_embedding = model.get_image_features(**inputs).numpy().flatten()
|
| 105 |
|
| 106 |
+
# Check if the embedding dimension is already 384
|
| 107 |
if len(image_embedding) != 384:
|
| 108 |
+
# Ensure PCA transformation gets the correct shape
|
| 109 |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten()
|
| 110 |
|
| 111 |
return image_embedding.tolist()
|
| 112 |
+
|
| 113 |
except Exception as e:
|
| 114 |
+
print(f"❌ Error generating image embedding: {e}")
|
| 115 |
return None
|
| 116 |
|
| 117 |
# Store Data in ChromaDB
|